|
|
@@ -74,7 +74,7 @@ The test pulses of interest defined in ISO~7637 are denoted \emph{Test pulse 1},
|
|
|
The general characteristics in common for all pulses are the DC voltage $U_A$, the surge voltage $U_s$, the rise time $t_r$, the pulse duration $t_d$ and the internal resistance $R_i$. The internal resistance is only in series with the pulse generator, not the DC power source. For pulses that are supposed to be applied several times, $t_1$ usually denotes the time between the start of two consecutive pulses. The timings are illustrated in \autoref{doubleexpfunc}.
|
|
|
|
|
|
|
|
|
-\begin{figure}
|
|
|
+\begin{figure}[h]
|
|
|
\centering
|
|
|
\begin{subfigure}[t]{0.45\textwidth}
|
|
|
\includegraphics[width=\textwidth]{doubleexpfunc}
|
|
|
@@ -83,33 +83,147 @@ The general characteristics in common for all pulses are the DC voltage $U_A$, t
|
|
|
\end{subfigure}\hfill
|
|
|
\begin{subfigure}[t]{0.45\textwidth}
|
|
|
\includegraphics[width=\textwidth]{doubleexpfuncrep}
|
|
|
- \caption{The repetition time is defined as the time between two adjacent rising edges, measured at 0.1 times the maximum pulse voltage.}
|
|
|
+ \caption{The repetition time is defined as the time between two adjacent rising edges.}
|
|
|
\label{fig:doubleexprep}
|
|
|
\end{subfigure}
|
|
|
\caption{The common properties of the pulses.}
|
|
|
\end{figure}
|
|
|
|
|
|
-\todo[fixa referens till rätt kapitel]
|
|
|
An important observation is that the definition of the surge voltage, $U_s$, differs in ISO~7637 and ISO~16750 as seen in \autoref{sec:us_difference}. \hl{In this report, only the definition from ISO~7637 is used.}
|
|
|
|
|
|
+\todo[Se till att fixa till referenserna här]
|
|
|
+\todo[Bestäm mig ifall jag ska använda båda definitionerna av $U_S$ eller bara ena]
|
|
|
+
|
|
|
\subsection{Test pulse 1}
|
|
|
This pulse simulates the event of the power supply being disconnected while the DUT is connected to other inductive loads. This leads to the other inductive loads generating a voltage transient of reversed polarity to the DUT's supply lines.
|
|
|
|
|
|
In the standard there are two additional timings associated to this pulse, $t_2$ and $t_3$, which are defining the disconnection time for the power supply during the voltage transient. In practice $t_3$ can be very short, specified to less than 100 µs, and the step seen in \autoref{fig:pulse1} might be too short to be clearly distinguishable when seen on a oscilloscope.
|
|
|
|
|
|
-\todo[Två bilder, en på kurvan och en på kretsen som orsakar den. En tabell med parametervärden.]
|
|
|
+\begin{figure}[h]
|
|
|
+ %\captionsetup{width=.5\linewidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{pulse1}
|
|
|
+ \caption{Illustration of test pulse 1.}
|
|
|
+ \label{fig:pulse1}
|
|
|
+\end{figure}
|
|
|
+
|
|
|
+\begin{table}[h]
|
|
|
+ \centering
|
|
|
+ \caption{Parameter values for pulse 1}
|
|
|
+ \begin{tabularx}{0.7\textwidth}{|X|c|c|}
|
|
|
+ \hline
|
|
|
+ \textbf{Parameter} &\textbf{\SI{12}{\volt} system} &\textbf{\SI{24}{\volt} system} \\
|
|
|
+ \hline
|
|
|
+ $U_A$ & \SIrange{13.8}{14.2}{\volt} & \SIrange{27.8}{28.2}{\volt} \\
|
|
|
+ \hline
|
|
|
+ $U_S$ & \SIrange{-75}{-150}{\volt} & \SIrange{-300}{-600}{\volt} \\
|
|
|
+ \hline
|
|
|
+ $R_i$ & \SI{10}{\ohm} & \SI{50}{\ohm} \\
|
|
|
+ \hline
|
|
|
+ $t_d$ & \SI{2}{\milli\second} & \SI{1}{\milli\second} \\
|
|
|
+ \hline
|
|
|
+ $t_r$ & \SIrange{0.5}{1}{\micro\second} & \SIrange{1.5}{3}{\micro\second} \\
|
|
|
+ \hline
|
|
|
+ $t_1$ & \multicolumn{2}{c|}{$\geq$\SI{0.5}{\second}} \\
|
|
|
+ \hline
|
|
|
+ $t_2$ & \multicolumn{2}{c|}{\SI{200}{\milli\second}} \\
|
|
|
+ \hline
|
|
|
+ $t_3$ & \multicolumn{2}{c|}{$<$\SI{100}{\micro\second}} \\
|
|
|
+ \hline
|
|
|
+ \end{tabularx}
|
|
|
+ \label{tab:pulse1}
|
|
|
+\end{table}
|
|
|
+
|
|
|
+\todo[En bild på kretsen som orsakar pulsen.]
|
|
|
|
|
|
\subsection{Test pulse 2a}
|
|
|
-This pulse simulates the event of a load, parallel to the DUT, being disconnected. The inductance in the wiring harness will then generate a positive voltage transient on the DUT's supply lines.
|
|
|
+This pulse simulates the event of a load, parallel to the DUT, being disconnected. The inductance in the wiring harness will then generate a positive voltage transient on the DUT's supply lines. distinguishable when seen on a oscilloscope.
|
|
|
+
|
|
|
+\begin{figure}[h]
|
|
|
+ %\captionsetup{width=.5\linewidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{pulse2a}
|
|
|
+ \caption{Illustration of test pulse 2a.}
|
|
|
+ \label{fig:pulse2a}
|
|
|
+\end{figure}
|
|
|
|
|
|
-\todo[Två bilder, en på kurvan och en på kretsen som orsakar den. En tabell med parametervärden.]
|
|
|
+\begin{table}[h]
|
|
|
+ \centering
|
|
|
+ \caption{Parameter values for pulse 2a}
|
|
|
+ \begin{tabularx}{0.7\textwidth}{|X|c|c|}
|
|
|
+ \hline
|
|
|
+ \textbf{Parameter} &\textbf{\SI{12}{\volt} system} &\textbf{\SI{24}{\volt} system} \\
|
|
|
+ \hline
|
|
|
+ $U_A$ & \SIrange{13.8}{14.2}{\volt} & \SIrange{27.8}{28.2}{\volt} \\
|
|
|
+ \hline
|
|
|
+ $U_S$ & \multicolumn{2}{c|}{\SIrange{37}{112}{\volt}} \\
|
|
|
+ \hline
|
|
|
+ $R_i$ & \multicolumn{2}{c|}{\SI{2}{\ohm}} \\
|
|
|
+ \hline
|
|
|
+ $t_d$ & \multicolumn{2}{c|}{\SI{0.05}{\milli\second}} \\
|
|
|
+ \hline
|
|
|
+ $t_r$ & \multicolumn{2}{c|}{\SIrange{0.5}{1}{\micro\second}} \\
|
|
|
+ \hline
|
|
|
+ $t_1$ & \multicolumn{2}{c|}{\SIrange{0.2}{5}{\second}} \\
|
|
|
+ \hline
|
|
|
+ \end{tabularx}
|
|
|
+ \label{tab:pulse2a}
|
|
|
+\end{table}
|
|
|
+
|
|
|
+\todo[En bild på kretsen som orsakar pulsen.]
|
|
|
|
|
|
\subsection{Test pulse 3a and 3b}
|
|
|
Test pulse 3a and 3b simulates transients ``which occur as a result of the switching process'' as stated in the standard \cite{iso_7637_2}. The formulation is not very clear, but is interperted and explained by Frazier and Alles \cite{comparison_iso_7637_real_world} to be the result of a mechanical switch breaking an inductive load. These transients are very short, compared to the other pulses, and the repetition time is very short. The pulses are sent in bursts, grouping a number of pulses together and separating groups by a fixed time.
|
|
|
|
|
|
These pulses contain high frequency components, up to 100~MHz, and special care must be taken when running tests with them as well as when verifying them.
|
|
|
|
|
|
-\todo[Fyra bilder, två på kurvorna, en på burst och en på kretsen som orsakar den? En tabell med parametervärden.]
|
|
|
+
|
|
|
+\begin{figure}[h]
|
|
|
+ \centering
|
|
|
+ \begin{subfigure}[t]{0.45\textwidth}
|
|
|
+ \includegraphics[width=\textwidth]{pulse3a}
|
|
|
+ \caption{Pulse 3a}
|
|
|
+ \label{fig:pulse3a}
|
|
|
+ \end{subfigure}\hfill
|
|
|
+ \begin{subfigure}[t]{0.45\textwidth}
|
|
|
+ \includegraphics[width=\textwidth]{pulse3b}
|
|
|
+ \caption{Pulse 3b}
|
|
|
+ \label{fig:pulse3b}
|
|
|
+ \end{subfigure}
|
|
|
+ \caption{Pulse 3a and 3b are applied in bursts. Each individual pulse is a double exponential curve with the same properties, $t_r$ and $t_d$, as e.g. pulse 2a}
|
|
|
+ \label{fig:pulse3}
|
|
|
+\end{figure}
|
|
|
+
|
|
|
+\begin{table}[h]
|
|
|
+ \centering
|
|
|
+ \caption{Parameter values for pulse 3a and 3b}
|
|
|
+ \begin{tabularx}{0.7\textwidth}{|X|c|c|}
|
|
|
+ \hline
|
|
|
+ \textbf{Parameter} &\textbf{\SI{12}{\volt} system} &\textbf{\SI{24}{\volt} system} \\
|
|
|
+ \hline
|
|
|
+ $U_A$ & \SIrange{13.8}{14.2}{\volt} & \SIrange{27.8}{28.2}{\volt} \\
|
|
|
+ \hline
|
|
|
+ Pulse 3a $U_S$ & \SIrange{-112}{-220}{\volt} & \SIrange{-150}{-300}{\volt} \\
|
|
|
+ \hline
|
|
|
+ Pulse 3b $U_S$ & \SIrange{75}{150}{\volt} & \SIrange{150}{300}{\volt} \\
|
|
|
+ \hline
|
|
|
+ $R_i$ & \multicolumn{2}{c|}{\SI{50}{\ohm}} \\
|
|
|
+ \hline
|
|
|
+ $t_d$ & \multicolumn{2}{c|}{\SIrange{105}{195}{\nano\second}} \\
|
|
|
+ \hline
|
|
|
+ $t_r$ & \multicolumn{2}{c|}{\SIrange{3.5}{6.5}{\nano\second}} \\
|
|
|
+ \hline
|
|
|
+ $t_1$ & \multicolumn{2}{c|}{\SI{100}{\micro\second}} \\
|
|
|
+ \hline
|
|
|
+ $t_4$ & \multicolumn{2}{c|}{\SI{10}{\milli\second}} \\
|
|
|
+ \hline
|
|
|
+ $t_5$ & \multicolumn{2}{c|}{\SI{90}{\milli\second}} \\
|
|
|
+ \hline
|
|
|
+ \end{tabularx}
|
|
|
+ \label{tab:pulse3}
|
|
|
+\end{table}
|
|
|
+
|
|
|
+\todo[En bild på kretsen som orsakar pulsen.]
|
|
|
|
|
|
\subsection{Load dump Test A}
|
|
|
The Load dump Test A simulates the event of disconnecting a battery that is charged by the vehicles alternator, the current that the alternator is driving will give rise to a long voltage transient.
|
|
|
@@ -118,7 +232,38 @@ This pulse has the longest duration, $t_d$, of all the test pulses. It also has
|
|
|
|
|
|
Prior to 2011, the Load dump Test A was part of the ISO~7637-2 standard under the name \emph{Test pulse 5a}. The surge voltage $U_s$ was in the older standard, \mbox{ISO~7637-2:2004}, defined as the voltage between the DC offset voltage $U_A$ and the maximum voltage. In the newer standard, \mbox{ISO~16750-2:2012}, $U_s$ is defined as the absolute peak voltage. Only the former definition is used in this paper, $U_s = \hat{U} - U_A$.
|
|
|
|
|
|
-\todo[Två bilder, en på kurvan och en på kretsen som orsakar den. En tabell med parametervärden.]
|
|
|
+\begin{figure}[h]
|
|
|
+ %\captionsetup{width=.5\linewidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{load dump a}
|
|
|
+ \caption{Illustration of load dump Test A. Note the difference of $U_S$ compared to all the other pulses. To minimize the risk of misunderstandings, only the way of specifying $U_S$ as the other pulses do will be used unless otherwise stated.}
|
|
|
+ \label{fig:loadDumpTestA}
|
|
|
+\end{figure}
|
|
|
+
|
|
|
+\begin{table}[h]
|
|
|
+ \centering
|
|
|
+ \caption{Parameter values for load dump Test A}
|
|
|
+ \begin{tabularx}{0.7\textwidth}{|X|c|c|}
|
|
|
+ \hline
|
|
|
+ \textbf{Parameter} &\textbf{\SI{12}{\volt} system} &\textbf{\SI{24}{\volt} system} \\
|
|
|
+ \hline
|
|
|
+ $U_A$ & \SIrange{13.8}{14.2}{\volt} & \SIrange{27.8}{28.2}{\volt} \\
|
|
|
+ \hline
|
|
|
+ $U_S$ ISO~16750 & \SIrange{79}{101}{\volt} & \SIrange{151}{202}{\volt} \\
|
|
|
+ \hline
|
|
|
+ $U_S$ ISO~7637 & \SIrange{64.8}{87.2}{\volt} & \SIrange{122.8}{174.2}{\volt} \\
|
|
|
+ \hline
|
|
|
+ $R_i$ & \SIrange{0.5}{4}{\ohm} & \SIrange{1}{8}{\ohm} \\
|
|
|
+ \hline
|
|
|
+ $t_d$ & \SIrange{40}{400}{\milli\second} & \SIrange{100}{350}{\milli\second} \\
|
|
|
+ \hline
|
|
|
+ $t_r$ & \multicolumn{2}{c|}{\SIrange{5}{10}{\milli\second}} \\
|
|
|
+ \hline
|
|
|
+ \end{tabularx}
|
|
|
+ \label{tab:loadDumpTestA}
|
|
|
+\end{table}
|
|
|
+
|
|
|
+\todo[En bild på kretsen som orsakar pulsen.]
|
|
|
|
|
|
\subsection{Test setup}
|
|
|
During a test, the nominal voltage is first applied between the plus and minus terminal of the DUT's power supply input. Then a series of test pulses are applied between the same terminals. The pulses are repeated at specified intervals, $t_1$, as depicted in \autoref{fig:doubleexprep}.
|
|
|
@@ -132,6 +277,7 @@ The verification is to be conducted with $U_A$ set to 0. There is, however, a pr
|
|
|
The limits, and tolerances, for the pulses are summarised in \autoref{tab:verification-list}. The matched loads are to be within 1\% of the nominal value. \cite{iso_7637_2}
|
|
|
|
|
|
\begin{table}[h]
|
|
|
+ \caption{These are all of the verifications that needs to be made before each use of the equipment, along with the limits for each case.}
|
|
|
\begin{adjustbox}{width=\columnwidth,center}
|
|
|
%\centering
|
|
|
\begin{tabular}{|l|r|r|r|r|}
|
|
|
@@ -139,7 +285,7 @@ The limits, and tolerances, for the pulses are summarised in \autoref{tab:verifi
|
|
|
& & \multicolumn{3}{c|}{Limits}\\
|
|
|
Pulse & Match resistor (\si{\ohm}) & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) \\
|
|
|
\hline
|
|
|
- Pulse 1, 12 V, Open & & $[ -110, -90 ]$ & $[1.6,2.4]$ \si{\milli} & $[0.5,1]$ \si{\micro} \\
|
|
|
+ Pulse 1, 12 V, Open & & $[ -110, -90 ]$ & \SIrange{1.6}{2.4}{\milli\second} $[1.6,2.4]$ \si{\milli} & $[0.5,1]$ \si{\micro} \\
|
|
|
Pulse 1, 12 V, Matched & 10 & $[ -110, -90 ]$ & $[1.6,2.4]$ \si{\milli} & $[0.5,1]$ \si{\micro} \\
|
|
|
Pulse 1, 24 V, Open & & $[ -660, -540 ]$ & $[0.8,1.2]$ \si{\milli} & $[1.5,3]$ \si{\micro} \\
|
|
|
Pulse 1, 24 V, Matched & 50 & $[ -660, -540 ]$ & $[0.8,1.2]$ \si{\milli} & $[1.5,3]$ \si{\micro} \\
|
|
|
@@ -156,42 +302,38 @@ The limits, and tolerances, for the pulses are summarised in \autoref{tab:verifi
|
|
|
\hline
|
|
|
\end{tabular}
|
|
|
\end{adjustbox}
|
|
|
- \caption{These are all of the verifications that needs to be made before each use of the equipment, along with the limits for each case.}
|
|
|
\label{tab:verification-list}
|
|
|
\end{table}
|
|
|
|
|
|
\section{Differences between the new and the old standard}
|
|
|
-Since the equipment used the project is designed for the older version of the standard, ISO~7637-2:2004 and possibly even ISO~7637-1:1990 together with ISO~7637-2:1990, the differences of importance between these will be presented in this chapter to see what parameters might be a problem for the older equipment to fulfil.
|
|
|
+Since the equipment used the project is designed for the older version of the standard, ISO~7637\nd2:2004 and possibly even ISO~7637\nd1:1990 together with ISO~7637\nd2:1990, the differences of importance between these will be presented in this chapter to see what parameters might be a problem for the older equipment to fulfil.
|
|
|
|
|
|
-One of the most notable differences is the removal of a test pulse from ISO~7637-2 that was called \emph{Pulse 5a} and \emph{Pulse 5b}, this was instead introduced to the ISO~16750-2 under the name \emph{Load dump A} and \emph{Load dump B}.
|
|
|
+One of the most notable differences is the removal of a test pulse from ISO~7637\nd2 that was called \emph{Pulse 5a}, this was instead introduced to the ISO~16750\nd2 under the name \emph{Load dump A}.
|
|
|
|
|
|
\subsection{Supply voltage}
|
|
|
+The definition of the DC supply voltage for the DUT differs in some case between the older and the newer versions of the standard. There are two different supply voltage definitions. $U_A$ represents a system where the generator is in operation and $U_B$ represents the system without the generator in operation. These have different values for \SI{12}{\volt} and \SI{24}{\volt} systems. $U_B$ is only relevant for Load dump Test A and is thus not defined in ISO~7637 anymore.
|
|
|
|
|
|
-\textbf{ISO 7637-2:2004}
|
|
|
-
|
|
|
-12V: $U_A = 13.5 \pm 0.5$
|
|
|
-
|
|
|
-12V: $U_B = 12.5 \pm 0.2$
|
|
|
-
|
|
|
-24V: $U_A = 27 \pm 1$
|
|
|
-
|
|
|
-24V: $U_B = 24 \pm 0.4$
|
|
|
-
|
|
|
-\textbf{ISO 7637-1:2015}
|
|
|
-
|
|
|
-12V: $U_A = 13 \pm 1$
|
|
|
-
|
|
|
-24V: $U_A = 26 \pm 2$
|
|
|
-
|
|
|
-\textbf{ISO 16750-1}
|
|
|
-
|
|
|
-12V: $U_A = 14 \pm 0.2$
|
|
|
+In the older ISO~7637 the definitions could be found in part 2 in clause 4.2. In the newer version these were moved to part 1, clause 5.3. The definition of $U_B$ was moved to ISO~16750\nd1: \hl{SE TILL ATT KOLLA I VILKA KAPITEL I VILKA STANDARDER SAKERNA STÅR NÅGONSTANS}
|
|
|
|
|
|
-12V: $U_B = 12.5 \pm 0.2$
|
|
|
-
|
|
|
-24V: $U_A = 28 \pm 0.2$
|
|
|
-
|
|
|
-24V: $U_B = 24 \pm 0.2$
|
|
|
+\begin{table}[h]
|
|
|
+ \caption{Comparison of the different supply voltage definitions.}
|
|
|
+\begin{adjustbox}{width=\columnwidth,center}
|
|
|
+ %\centering
|
|
|
+ \begin{tabular}{|l|l|r|r|r|}
|
|
|
+ \hline
|
|
|
+ & & \multicolumn{3}{c|}{Supply voltage range} \\
|
|
|
+ Parameter & $U_N$ & ISO 7637-2:2004 & ISO 7637-1:2015 & ISO 16750-1:2018 \\
|
|
|
+ \hline
|
|
|
+ $U_A$ & \SI{12}{\volt} & \SIrange{13}{14}{\volt} & \SIrange{12}{13}{\volt} & \SIrange{13.8}{14.2}{\volt} \\
|
|
|
+ $U_A$ & \SI{24}{\volt} & \SIrange{26}{28}{\volt} & \SIrange{24}{28}{\volt} & \SIrange{27.8}{28.2}{\volt} \\
|
|
|
+ \hline
|
|
|
+ $U_B$ & \SI{12}{\volt} & \SIrange{12.3}{12.7}{\volt} & - & \SIrange{12.3}{12.7}{\volt} \\
|
|
|
+ $U_B$ & \SI{24}{\volt} & \SIrange{23.6}{24.4}{\volt} & - & \SIrange{23.8}{24.2}{\volt} \\
|
|
|
+ \hline
|
|
|
+ \end{tabular}
|
|
|
+\end{adjustbox}
|
|
|
+ \label{tab:supplyVoltageDiff}
|
|
|
+\end{table}
|
|
|
|
|
|
\subsection{Definitions}
|
|
|
ISO~7637 and ISO~16750
|