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Abstract—High-altitude electromagnetic pulse (HEMP),
ultrawide-band pulse (UWB) and lightning electromagnetic pulse
(LEMP) are often mathematically described by a double
exponential function. In practice, the physical parameters of the
pulse and the mathematical parameters of the function must
often be transformed into each other. In this paper, a strict
implicit translation equation group of parameters is deduced.
Meanwhile, a simplified translation system of equations for
parameter estimation is proposed based on statistical method.
Two groups of correction terms are also given to improve the
estimation precision. The estimation results demonstrate that the
overall estimation error is less than 2.9%.
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I.  INTRODUCTION

Double exponential function is widely used to
mathematically describe high-altitude electromagnetic pulse
(HEMP), ultrawide-band pulse (UWB) and lightning
electromagnetic pulse (LEMP). This type of function contains
four mathematical parameters: a, f, k and Ey. Associated with
the parameters of the function, there are three physical
parameters that describe the pulse shape: the rise time (), the
full width at half maximum amplitude (fpwivm) and the
maximum electrical field strength (Emay). The two groups of
parameters often need to be transformed into each other. In
particular, researchers pay close attention to the relationships
among a, f and f, frwum. A method has been proposed to
estimate the physical parameters using least squares and
Nelder-Mead algorithms, and inverse transform equations can
be given by the same algorithms [2]. This approach gives an
integrated system of transform equations, but the equations are
not simple or direct. Moreover, the overall estimation error of
this method is greater than 5%. To improve the precision, a
linear equation group with four assistant variables has been
proposed based on statistical methods [3]. Different variables
are given for different intervals of f/a. Based on the same
method, another equation group is given with several linear
functions for larger values of f/a and two offset exponential
functions for smaller values of pS/a [4], which gives the
number of the section. The use of statistical methods improves
the estimation precision, but the function is somewhat
complicated.
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In this paper, a strict implicit translation equation group of
the parameters is deduced. With the goals of simplicity and
precision, a simplified translation system of equations is
proposed with correction terms for parameter estimation based
on the statistical method described in [3] and [4]. Finally, the
estimation errors are analysed.

II. SHAPE PROPERTIES OF DOUBLE EXPONENTIAL PULSE

The double exponential pulse can be described as follows:
E(t)=E k(e —e™)-u(t) (1)

where Ej is the amplitude of the pulse, o and / are parameters
characterizing the rise and fall time, and u(¢) is a step unit
function. A fourth parameter k£ can be calculated by

_aln a-Inf jﬁln a-Inf

k=e *Ff —e oF ()

The definitions of the rise time (#) and pulse width (¢rwin)
are shown in Fig. 1. The rise time corresponds to the time
period from 10% to 90% of the maximum value. The pulse
width is the time interval between the 50% value at the rising
edge and the 50% value at the falling edge.
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Fig. 1. Pulse shape and the definition of # and #rwim

III. STRICT EQUATIONS FOR TWO GROUPS OF PARAMETERS

Based on the definition of ¢, we can obtain (3):

logoy, = ligo, T, (3)
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where t10% and fo0e, denote the time at which the magnitude 7
equals 10% and 90% of Eo. The values of t10% and 909, satisfy
(4) and (5):

‘-0 f=1505+A (11)
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where A; and A are correction terms used to improve the
estimation precision. Assuming that A; and A, are constant,
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Fig. 2. Parameters at, and atrwuy for f/a ranging from 1.001 to 10000.
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Thus, the parameter . can be eliminated by (7) and (8).
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The relationship among o, S, ¢ can be written as (9): B A Pla
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The parameters # and trwiv can be calculated as (12) when a
and S are known.
In the same way, the relationship among a, f, trwrm can be

deduced as (10): 1 o
[y :—\/5.4E+0.485+Al
o
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The translation equations for the mathematical parameters
a, B and the physical parameters ., trwun are described by (9)
and (10). Obviously, these equations are transcendental,
indicating that strict explicit translation equations do not exist.

The parameters a and S can also be calculated, as shown in
(13), when # and frwum are known.

P [(0.485+ A)(1.505+ A,) fry

IV. ESTIMATION BETWEEN TWO GROUPS OF PARAMETERS S~ (1.505 + Az) lrwim —54 z,
It has been confirmed that at; and afrwim are constant for a L
given ratio of f/a [3]. Based on the definitions of # and tFwim, 1 1.505+A,
a highly precise value of a# and afrwim can be calculated via B= PR (13)
iterative algorithms. Solutions of a# and afrwnm with an FWHM r
accuracy of 15 effective digits are plotted in Fig. 2, where f/o
ranges from 1.001 to 10000. Interestingly, the values between To obtain certain parameter values from equation (11), A,

o?Prwiv and a/f have a nearly linear relationship, and the ~ and A; must be constant, indicating that A, and A, should be
products of aftrwin are approximately constant, as shown in described by functions that are independent of the parameters

Fig. 3. to be calculated. Thus, we can divide our approach into two
Based on linear fitting, the data shown in Fig. 3 can be fit conditions:
as (11): e Condition 1. « and S are known.
Pt =54 o +0485+ A e Condition 2. ¢ and frwnm are known.
FWHM ° ° 1
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The sum of the two exponential functions is used to fit
the correction terms for varying values of «/f under
condition] and for varying values of trwim/t; under condition
2. The fitting results for A; and A, are given by (14) and (15),
respectively.
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Fig. 4 presents the fitting results for A, and A, versus

a/f and tpwnw/t,, respectively, where A', and A', are

accuracy values of the correction terms calculated from (16)
and (17).

(16)
a7n

A =@, —5.4%—0.485

A' =ty t o B—1.505

0.15
_o 04 oot
;L ! §N 0.05
5 <
< 2 o
3 i
< < 015
10’ 10' 10° 10° 10" ¥ 10? 10°
Pla tFWHM/ ¢

(a) The correction terms versus a/ff  (b) The correction terms versus frwiw/

Fig. 4. The fitting results of A, and A, compared with the accuracy values
of the correction terms versus a/f and trwun/?-

V. ANALYSIS OF THE ESTIMATION ERRORS

Obviously, for a given value of f/a or tpwnm/t, the relative
errors for estimation are the same. The estimation error curves
are shown in Fig. 5, where f/a ranges from 1.001 to 10000.
Corresponding to f/a, tewmw/t ranges from 4.291 to 3169.
Based on these results, the estimation errors of fpwuv and ¢ are
1.5% and 1.4%, respectively, and the estimation errors of f
and « are less than 1.3% and 2.9%.

In addition, we also examine the relative errors of the
reproduction terms ¢'rwiv and ¢y, corresponding to the o and
values estimated by (12), compared with the known frwum, &
As shown in Fig. 6, the estimation errors of ¢y and 'rwiw are
less than 2.1% and 1%.

This paper confirms that the presented method produces
limited parameter estimation errors. However, based on the
tendency of these error curves, we believe that the
relationships between «, S and #, frwnm could be used for
larger ratios of f/o and trwnni/tr.
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Fig. 5. Relative estimation errors of #wuv and # versus f/o and relative
estimation errors of o and /8 versus frwin/t:.
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Fig. 6. Relative errors of the reproduction terms #'rwiv and 7, corresponding
to the estimated a and S, compared with the known zrypw, 2.

VI. CONCLUSION

This paper gives a strict implicit translation equation group
of parameters for double exponential function. Using
statistical method, a simplified approximate translation system
of equations with correction terms is proposed, which can
translate the mathematical parameters « and 5 and the physical
parameters # and frwim into each other. With this method, the
estimation errors of # and frwim are less than 1.5% and 1.4%,
respectively, and the estimation errors of a and f are less than
1.3% and 2.9%, respectively. In addition, the estimation error
of the reproduction terms ¢, and frwum, corresponding to the
estimated values of a and g, are less than 2.1% and 1%,
respectively.
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