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Novel Parameter Estimation of Double Exponential
Pulse (EMP, UWB) by Statistical Means

Congguang Mao and Hui Zhou

Abstract—High-power electromagnetic environments, such as
the high-altitude electromagnetic pulse (HEMP) and the ultrawide-
band (UWB) pulses, pose dangerous threats to electronic systems.
Such pulse shapes are often described physically by the char-
acteristic parameters: the rise time t,., pulse width t¢y;,,,, and
maximum electric field strength F, .., and mathematically by
the double exponential function with characteristic parameters
a, 3, k,and E,. In practice, it is very necessary to transform
the two groups of parameters into each other. In this paper, a novel
relationship between the two groups of parameters is established
by statistical means. This method utilizes only four assistant vari-
ables to realize the transform, and the overall estimation error is
less than 2.0%.

Index Terms—Double exponential function, electromagnetic
pulse (EMP), high-altitude electromagnetic pulse (HEMP), numer-
ical calculation, parameter estimation, ultrawide band (UWB).

1. INTRODUCTION

IGH-POWER electromagnetic environments, such as the

high-altitude electromagnetic pulse (HEMP) created by
nuclear bursts and the ultrawide-band (UWB) pulses, pose dan-
gerous threats to electronic systems. Such pulse shapes are of-
ten described physically by the characteristic parameters: the
rise time t,, pulse width #gwhm, and maximum electric field
strength E, ., and mathematically by the double exponen-
tial function with characteristic parameters «, 0, k, and Ej.
In practical experiments and numerical simulations about the
electromagnetic pulses (EMPs), it is very necessary to trans-
form the two groups of parameters into each other. A good
nature of the double exponential function is found by numerical
calculations, which deduces a parameter estimation method [1].
However, the method is too periphrastic, and there is no proper
error analysis. The least squares and Nelder—Mead algorithms
are also applied to estimate the physical parameters from the
mathematical ones [2], but the equations cannot realize the
inverse transform. The main idea of this paper is to explore
the intrinsic property between the two groups of parameters,
based on which a simple and effective relationship is estab-
lished. Finally, the estimation errors are analyzed and presented
definitely.

II. DOUBLE EXPONENTIAL PULSE SHAPE
The popular double exponential shape is given by (1) [3] as
E(t) = Egk(e @' — e Pt (1)
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Fig. 1. Double exponential pulse shape and physical parameters.

where FEj is the maximum of the function, k£ is a modifying
factor, o and 3 are characteristic parameters, 0 < a < (§ to
keep the pulse positive polarity, and ¢ > 0 for ¢ (in seconds')
denotes physically the time. The rise time ¢, is the time interval
between the instants in which the instantaneous amplitude of a
pulse first reaches specified lower and upper limits, namely, 10%
and 90%, respectively, of the peak pulse amplitude E. And the
pulse width g1, 1s the time interval between the points on the
leading and trailing edges of a pulse at which the instantaneous
value is 50% of Ej. The waveform and the definitions of physical
parameters are plotted in Fig. 1.

III. CORELATION BETWEEN (o, 3) AND (%, tfwhm )

The maximum value of the pulse can be transformed by [2]

1
k= (e—ato — e—ﬂf«]) )
where the peak time ¢y = (In o — In 3)/(a — f3).
Given the values of a and (3, t.=t3—1%; and
tiwhm = t4 —to (in Fig. 1), where t;, to, t3, and ¢, are
roots of the following nonlinear equation we have

E(t) = Egk(e™ " — efm) = cEyk(e " — ef‘m’”).

EO = Enax

Namely,
et — e Pt = c(e e‘ﬁt“). (3a)

Further,
efat _ ef)»at _ C(efln )\/()»71) o ef)nln )\/()»71)) (3b)

where ¢ =0.1,0.5,0r 0.9, and 2 = 3/«. Equations (3a) and (3b)
reveal that the k-factor has nothing to do with ¢, or ttynm, and
specified the values of A and ¢ (0 < ¢ < 1), ot will be a constant.
This means that « is inversely proportional with the chosen root

I'The physical units are omitted in the following text for convenience.
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TABLE I
VALUES OF FOUR ASSISTANT VARIABLES AND MAXIMUM ESTIMATION ERRORS
Bla Lt ' 1, A B C D Maximum Estimation Errors (%)
(1.1,1.15] (4.29458,4.29882] 0.08483 4.20127 1.17449 1.27480 0.3
[1.15,1.2] [4.29882,4.30441] 0.11146 4.17066 1.15737 1.29448 0.3
[1.2,1.3] [4.30441,4.31874] 0.14510 4.13011 1.13370 1.32302 0.3
[1.3,1.4] [4.31874,4.33720] 0.18200 4.08240 1.10520 1.36005 0.3
[1.4,1.5] [4.33720,4.35834] 0.21140 4.04108 1.08000 1.39531 0.3
[1.5,1.7] [4.35834,4.40733] 0.24495 3.99042 1.04720 1.44486 0.3
[1.7,2.0] [4.40733,4.49058] 0.28387 3.92403 1.00269 1.52093 0.3
[2.0,2.5] [4.49058,4.65239] 0.32032 3.85067 0.94995 1.62731 0.3
[2.5,3] [4.65239,4.82468] 0.34484 3.78972 0.90373 1.74249 0.3
[3.,4] [4.82468,5.18725] 0.36245 3.73644 0.85939 1.87732 0.3
[4,6] [5,6] 0.37545 3.68432 0.81212 2.06921 0.6
[6,10] [6,7.45] 0.37810 3.66936 0.77381 2.30288 0.7
[10,20] [7.45,11] 0.36724 3.78565 0.74330 2.61797 0.7
[20.49] [11,21] 0.34718 4.20629 0.71849 3.13579 0.7
[49.600] [21,200] 0.32500 538116 0.69852 4.27180 2.0
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. . . Fig.3. Fitting errors of trynpm /tr and Btggynm versus 8/« with straight lines.
Fig. 2. Variations of combinations of tfyhm, tr, B, and a versus fa. (a) Fitting errors of Sty nm versus 5/« with a single straight line. (b) Fitting

(@) tfwhm /tr and (Bt variations versus B/a. (b) aty, atypm, and Bty
variations versus [3/a.

t, and then so is « with ¢, and ¢ [1]. Take randomly A = 15
as an example with « varying, one can obtain different values of
0, t., and trynm, while at, = 0.09877 and aitrynm, = 0.91922.
Here, the nonlinear equation (3a) is solved by the bisection
method, and the calculation errors are less than 101 [4].

At sampling points in the intervals o € [1 x 108, 4 x 10%]
and 8 €[5 x 108, 600 x 10%], t,, tryhm, and some of their
products and quotients are calculated. The results are plotted
as functions of 3/«. It is very interesting that the values of
tiwhm /tr and Btegnm appear as two straight lines [see Fig. 2(a)],

errors of tryum /tr and Bteynm versus 3/a with subsection straight lines.

while the other products appear as strong curves [see Fig. 2(b)].
So, the correlations between tewhm /tr, Stewhm, and 5/« are
formulated as the following linear equations system:

twhm :Aé—‘rB
t, «

(4a)

Otiwhm = C’g +D. (4b)

The next step is to determine the assistant variables A, B,
C, and D with the linear fitting method. With o = 1 X 10® and
changing values 3 € (1.1 x 108,60 x 10°], different values of
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Fig. 4. Values and corresponding estimation errors of ¢, and tfypy, in
the intervals @ € [1 x 107, 10 x 107] and 3 € [1.10001 x 10%, 1.2 x 108].
(a) Values of ¢, (102). (b) Values of trypnm (1072). (c) Estimation errors of
t;. (in percent). (d) Estimation errors of ;. , - (in percent).

trwhm /tr> Btiwhm» and 3/« are calculated. First, a single straight
line is adopted to fit the curve Btgyum, and the fitting errors are
calculated by (5), where X = Otgyhm

error = (1 — %) x 100%. 5)

99
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-0.2690
-0.2197
-0.1704
-0.1212
-0.07189
-0. 02261
0. 02666
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-0. 06955
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0.1029
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Fig. 5. Estimation errors of o/, 3', ¢/ and t’/ﬁ whm 0 the intervals o € [1 x

107, 10 x 107] and 3 € [1.10001 x 108, 1.2 x 108]. (a) Estimation errors of
o’ (in percent). (b) Estimation errors of 3’ (in percent). (c) Reproduction errors
of ¢!/ (in percent). (d) Reproduction errors of t’jﬁ whm (in percent).

The results show that the errors near the origin are too large.
This indicates that it is not a real straight line as it looks, but the
more nonlinear the curve appears, the closer it is to the origin
[see Fig. 3(a)]. So the curve is divided into several subsections to
fit with overall fitting errors <0.5%, and so does (4a) with errors
<0.9% [see Fig. 3(b)]. The values of four assistant variables are

listed in Table 1.
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Equations (4a) and (4b) indicate that given the ratio of 5/,
twhm 1S directly proportional to ¢, and inversely proportional to
0, and both the proportion coefficients vary linearly with 3/a.

When a =1 x 10% and 5 = 1.00001 x 108, the true value
Of tewhm /tr = 4.29100 and Stynm ~ 2.44640. It implies that
[ must not be great infinitely, and a pulse shape can be fitted
with the double exponential function only when

tW m
fth > 4.29100 ©6)

"

Otiwhm > 2.44640. @)
From (4) and Table I,

%im Iwim _ 4 4 B — 498610 8)
éim Btiwhm = C + D = 2.44929. )
—Q

The percentage errors are, respectively, —0.114% and
0.118%.

IV. ANALYSIS OF ESTIMATION ERRORS

The next work is to examine the precision of the method. In
practice, two cases can be met: one is to obtain ¢/, and ¢;, . from
aand 3, and the other is from ¢, and ¢y, to @’ and 3, where ¢/,
tonm s @ > and B'are the estimated parameters. The intervals o €
[1x 107, 10 x 107] and 8 € [1.10001 x 10%, 1.2 x 10%] are
chosen to validate the reliability, and the precise values of t,
and trynp are calculated by the method described earlier.

First, given « and (3 and from (4)

C D
ticwhm = E + E (103.)
t = M (10b)
" A(f/a)+ B

The estimation errors [by (5), where X = t,, tgynm] of ¢,
and ;. are both less than 0.2% [see Fig. 4(c) and (d)], and
the value ranges of ¢, and ts1,,, are plotted in Fig. 4(a) and (b).

Second, given ¢, and tgy1y, and from (4)

gy C(1_ B\, D
N A tr tfwhm thhIIl

) Ap'
o= .
tfwhm /tv - B

(11a)

(11b)

The maximum estimation errors [by (5), X = «, 5] of ¢ and
(3 are both less than 0.3% [see Fig. 5(a) and (b)].

The errors of o’ and 3 will consequentially degrade the pre-
cision of reproductions ¢/ and t{_, .. So, based on o and [,
the true values of ¢/ and ¢{,, are also calculated and compared
with ¢, and tgy, - The final errors calculated by (5) are less
than 0.2% [see Fig. 5(c) and (d)].

The validation procedures of other intervals are the same
as mentioned earlier. The maximum estimation error of the
six ones in every interval is denoted in the last column of
Table I.

V. CONCLUSION

In this paper, a novel parameter estimation method is proposed
for the double exponential pulse. With this method, the physical
and mathematical parameters can be transformed from each
other. The estimation errors of ¢., t{ .., &', and 3" are all less
than 2.0%, and the errors of the reproductions ¢/ and t{,,  are
less than 1.0%. Furthermore, if the ranges of ¢, and tgyyy, Or
« and ( are beyond that given earlier, it is believed that the
estimations can also be obtained by this idea.
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