
V. CONCLUSION 

The described method of calibration proved to be simple and ac- 
curate. It is  particularly suitable for automatic operation. A calibrated 
standard can be easily measured versus a number of reference stan- 
dards, and this makes results very accurate and credible. Additionally 
all standards of the reference group are mutually checked in each 
calibration process. 
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Abstract-For the double exponential function f ( t )  =IC(eCat - e-bt), 
which is used for impulse testing of electrical components and systems, we 
derive an approximate relation between the ratio ym = T,/Tma,, where 
T,,, and T, are, respectively, the times to reach the peak value F,,, 
and the value Fmax/m on the taii of the pulse, and the ratio z = b/a.  This 
relation is useful for finding z for a prescribed ym, where m is usually 
equal to 2. Our formula is much simpler than that given by Googe, Ewing 
and Hess [l], but gives results of comparable accuracy. We also present 
a number of RC two-ports, alternative to those of [l], for generating the 
test function f ( t )  from an impulse function 6 ( t ) ,  as well as from the step 
function u(t) .  

I. INTRODUCTION 

In a recent paper [ 11, Googe, Ewing and Hess considered the double 

(1)  

exponential function 

f ( t )  = li(ePat - e-bt) 

which is often used in testing electrical devices and systems for their 
response to lightning and switching transients and electromagnetic 
pulse disturbances, and derived the following relationships connecting 
the parameter z = b / a ,  T,,, = time at which f ( t )  reaches the 
maximum value F,,, and T, = time at which f ( t )  attains the value 
Fm,,/2 on the tail of the pulse (see Fig. 1) 

uTmax = ( l n z ) / ( z  - 1) 
T, 

Tmax 
y = -  

While (2) is an exact relationship, (3) is an approximate one’, based 
on the practical situation that b >> U ,  i.e. x >) 1. The latter equation 
has to be solved for z for a prescribed y. An iterative procedure for 
the purpose has been given in [l], based on the observation that a 
first guess for z is z 

In this paper, we first derive a relation between y and z, which is 
simpler than (3). We next carry out a detailed study of the problem of 
synthesizing an RC two-port which will generate f ( t )  in response to 
an excitation of the form of S ( t )  or u( t ) ,  where S ( t )  and u( t )  denote 
the unit impulse and unit step function, respectively. 

1Oy. 

11. DERIVATION OF THE RELATION BETWEEN y AND X 

Maximizing (1) gives the condition 

e--bTmax = (l/z)e-aTmax. (4) 
This is the same as (2), expressed in a different form. Now from 
(1) and (41, 

F,,, = f(Tm,,) = h~e-”T”””[l - (I/%)]. ( 5 )  
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Fig. 1. 
considered m = 2 and used T, for Tz. 

Plot of the double exponential function (1). The authors of [l] 

Let Tm be defined by f(T,) = Fmax/m at the tail end of (1). This 
is a generalization of T, of [l], for which m = 2. Thus 

[1 - (1/x)I/m. (6) e-aTm -bTm - e-aTm - - e-aTmax - e  

where we have used the fact that b >> a so that e-aTm >> e-bTm. 
From (6) ,  we get 

~m = Tm/Tmax = 1 + {ln[mx/(x - l)]}/(aTmax). (7) 

In (71, if we substitute the value of aTmax from (2) and use the 
approximation z >> 1, then we get 

(8) 

(9) 
This is a much simpler equation than (3). Computation shows that 
for x = 10,100 and 1000, y2 = 4.01,16.05 and 101.34 respectively, 
the corresponding values of y (from (3)) being 4.12, 16.12 and 
101.38. The difference therefore lies only in the fractional part, and 
it decreases with increasing x. 

ym = 1 + z ( lnm) / ( lnx ) .  

y2 = 1 + 0.693x/(ln z). 

For the half-peak case, we have m = 2 so that 

111. RC TWO-PORT SYNTHESIS FOR GENERATING 
(1) FROM A UNIT IMPULSE EXCJTATION 

As noted in [l], if a two-port is to produce (1) at the output with 
a unit impulse as the excitation, then its transfer function should be 

( 3 s )  = L[f(t)l /m(t)l  
= K ( b  - U ) / [ ( .  + a)( .  + b)] .  (10) 

Identifying this as -y21/y22, and taking 5/22 as (s+a)(s+b)/(s+c),  
where a < c < b, the authors of [ l ]  obtained the ladder realization of 
Fig. 2, and claimed that the choice of c would affect the gain of the 
two-port and hence K .  This was justified through another network, 
shown in Fig. 3, which is substantially different from the network of 
Fig. 2 in architecture as well as excitation. We shall deal with both of 
these networks as well as some possible altemative designs in detail. 

First, look at Fig. 2 and note that the d.c. gain of the network, 
G(O), is unity, so that from (lo), 

IC 1 ab/(b - a). 

v o ( t )  = [ab/ (b  - a ) ~ ( e - " ~  - e-'*) 

(11) 

(12) 

This is independent of c, and so is the output 

contrary to the assertion made in [l]. 

Fig. 2. Ladder network for realizing f(t). 

- I- 
Fig. 3. Impulse generating network used in [l] to justify an optimum choice 
of the parameter c. 

Straightforward analysis of the Fig. 2 network gives 

G( S )  = (Ci cz RI RI )  / 
{SI + s[(CzR2)-' + (CiRi) - '  + (C;RZ)-~] 
+ (clczRlR2)-1} 

= ab/[s2 + s (a  + b )  + ab] (13) 
where the latter form follows from a combination of (10) and (11). 
Comparing the coefficients of the two forms, we get 

(CiCzRiRa)-' = ab (14) 
( C Z R Z ) - ~  + (CiRi) - '  + (C1Rz)-' = U + b. (15) 

Since there are four elements, and only two constraints, we are free 
to choose two elements as per convenience and calculate the other 
two in terms of these. Accordingly, several designs are possible, as 
illustrated by the following special cases. 

Case I-Equal Capacitor Design: Let C1 = CZ = C; then (14) 
and (15) give 

(16) 
(17) 

where G, = l / R z ,  i = 1,2.  Combining (16) and (17), one can obtain 
a quadratic equation in GI (or in GI), the solution of which is 

GIG2 = abC2 

GI + 2G2 = ( U  + b)C 

GI [(U + b)C/4]{1 f [I - 8 ~ b / ( a  + b)z]1'2}>. (18) 

Thus G2 has two possible values, provided, of course, that 

8ab < ( U  + b)2.  

[b - (3  + &)a][b - (3 - &)U] > 0. 

b / u  > (3 + &) = 5.83. 

d = [l - 8ab/ (a  + b)2]1'2 

(19) 

(20) 

Equation (19) can be put in the form 

Since, in practice, b / u  ,> 1, the only acceptable condition foa 
satisfying (20) becomes 

(21) 

With the notation 

(22) 
we can now summarize the equal capacitor design as 

c1 = c, = c 
b/u  > 5.83 

(23) 
R I  = ( U  + b ) ( l f  d ) / ( 4 ~ b C )  

Rz = ( U  + b ) ( l  d ) / ( 2 a b C ) .  
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Case 2-Equal Resistor Design: With RI = RZ = R, (14) and 
(15) give 

D1Dz = abR2 (24) 
D2 + 2 0 1  = ( a  + b)R (25) 

where D ,  = l / C z ,  i = 1,2.  The similarity of these equations with 
(16) and (17) allows us to write down the design equations without 
further analysis as 

RI = Rz = R 
b / a  > 5.83 

Ci = ( U  + b)(l  T 4/(2abR) 
C2 = (0 + b ) ( l  f d ) / ( 4 ~ b R ) .  

(26) 

Case 3-Design Given by Googe, Ewing and Hess [I]: In [I], C2 
was normalized to 1 F and Rz came out to be l / ( a  + b - c), where 
a < c < b. Thus, from (14) and (15), we get 

(27) 

(28) 

(C1 RI)-' = a b / ( a  + b - c )  

(RF1 + a + b - c)C;' = c. 

Solving these equations, we get 

C1 = ( U  + b - c) ' / [ c (u  + b - C) - ab] 

RI  = [.(U + b - C )  - ab] /[ab(a  + b - c)]. 
(29) 

These are the same values as given in [l]. 

Iv. NETWORK SYNTHESIS FOR GENERATING 
f( t )  FROM A UNIT STEP FUNCTION 

We now consider the network of Fig. 3, where C1 is first charged 
to the d.c. voltage Vi, and then the switch is closed at t = 0. By 
Thevenin's theorem, this network is equivalent to that of Fig. 4. 
Clearly, this is a bandpass network (in contrast to Fig. 2, which is 
a lowpass network) excited by a step function voltage Vlu(t). By 
elementary analysis, the transfer function for this network is obtained 
as 

G(s )  = ( C 2 R 2 ) p 1 ~ / { ~ 2  + [(CzRz)-' + (CiR2)-' 
+ (CiRi)-l]s+ ( C I C ~ R I R Z ) - ~ } .  (30) 

When excited by a unit step voltage u( t )  (VI is assumed to be 
unity, for convenience and without any loss of generality), the output 
voltage transform would be 

Vo(s) = ( l /s)Gz(s)  
= ( C ~ R Z ) ~ ~ / { S ~  + [(C2R2)-l+ (CiRi)-' 

+ (CiR2)-']s + (CiCzRiRz)-l}. (31) 

Clearly, this is of the form (10) with 

K ( b  - U) = (C*R2)-l 
(C2R2)-' + (Ci RI)-' + (Ci R2)-' = a + b 

(CiC2RiR2)-' = ab. (32) 

Hence, as claimed correctly in [l], v,(t)  will be of the form (1). If 
the same elements as those for the lowpass network of [l] (which is 
the same as Case 3 of the previous section) are used, then we get 

IC = 1/[C2R2(b - U ) ]  = ( U  + b - c ) / ( b  - CL). (33) 

This shows that indeed, the peak value of the generated pulse now 
depends on c, and c = 0 gives the highest value. However, because 
a < c < b, and b >> a ,  c = 2a is quite an acceptable value, giving 
I< = 1. 

2L v, 
-l- FR1 

1 0 

Fig. 4. Thevenin equivalent of the network of Fig. 3. 

t - 1 0 

Fig. 5. A possible network realization of (36). 

Fig. 6.  Another candidate network for realizing (36).  

For the element values of Case 1 of the preceding section (equal 
capacitor design), we have from (23) and (32), 

K ( b  + a ) ( l  f d ) / [ 4 ( b  - U ) ] .  (34) 

Using the positive sign in (34) gives a higher Ii; this corresponds to 
the negative sign in Rz given by (23). The highest possible value of 
K is obtained when b >> a and b >> 8, and this value is 1/2, which 
is half of that obtained from the design of [l]. 

For the Case 2 design (with equal resistors), we get from (26) and 
(321, 

Ii = ( b  + a ) ( l  d ) / [ 2 ( b  - a)] .  (35) 

Once again, the positive sign gives a higher value of K ,  which 
corresponds to the negative sign in C2 given by (26). The highest 
possible value of K here is unity (with b >> a and b >> 8), in 
contrast to the Case 1 design. Hence, equal resistor design is to be 
preferred compared to equal capacitor design. Compared to both of 
these designs, however, the design of Googe, Ewing and Hess [ l ]  
has an edge with respect to the peak voltage obtained. 

The bandpass transfer function of the form 

G ~ ( s )  = K ( b  - ~ ) s / [ ( s  + a)( .  + b)]  (36) 

can also be realized by either of the two networks shown in Figs. 5 
and 6. For the former, 

(CzRi)-l = K ( b  - U )  

(CiRl)-' + (C2Rz)-' + (CzRl)-l = U + b 

( C ~ C ~ R I R ~ ) - '  = ab (37) 
while for Fig. 6, the corresponding relations are 

(Ci RI)-' = K ( b  - U )  

(CIR1)-l+ (C2Rz)-l+ (CiR2)-' = a + b 
( C I C ~ R ~ R Z ) - ~  = ab. (38) 
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Equal capacitor or equal resistor designs can now be easily derived 
by appropriate replacements in the results for the network of Fig. 4. 

V. CONCLUSION 

A formula, simpler than the existing one, has been given for the 
design of the double exponential function f ( t )  = K(eeat - e--bt). 
Also, the problem of synthesizing an RC two-port for generating 
f ( t )  from an impulse or step excitation has been discussed in detail, 
and several alternative designs and structures have been presented 
for this purpose. 
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Producing 180" Out-of-Phase Signals 
From a Sinusoidal Waveform Input 

Hossein Golnabi and Ashkan Ashrafi 

Abstract-In this paper a simple and novel method for producing 
two signals with 180" phase difference has been introduced. The phase- 
balanced signals are produced from a single sinusoidal input signal using 
two matched op-amps. The phase accuracy of the proposed circuit due 
to mismatched components is investigated With a two-pole model for the 
operational amplifiers. With high-precision integrated circuits, the phase 
error at the amplifier pole frequency (2 MHz) is calculated to be about 
0.5" which is a remarkable achievement. The discrete implementation of 
this scheme is also discussed, and there is a good agreement between the 
experimental results and the calculated values. The main features of this 
circuit make it suitable for use in bridge measuring systems and lock-in 
amplifiers. 

I. INTRODUCTION 
In many instrumentation systems, the existence of two 180" out-of- 

phase sinusoidal signals is essential. These two signals could be used 
for increasing the sensitivity of bridge circuits such as a Wheatstone 
bridge, which can be used for measuring an unknown resistor in strain 
gauge systems [l]. The other great advantage of two well-balanced 
180" out-of-phase signals is the ability to eliminate the effects of 
offset in lock-in-based systems [2]. The accuracy and reliability of 
such signals are, therefore, very important in the performane of 
high-precision measuring instruments. At low frequencies, generating 
such signals is not a complicated task, but for high frequencies the 
effects of nonideal circuit elements will cause deterioration from the 
ideal response. Two traditional remedies exist for this problem; the 
first is to use a transistor pair as a differential amplifier, and the 
second is to use an operational amplifier in the inverting mode. The 
former is a well-known method, but it has several limitations such as 
low permissible input voltage levels, and the requirement of finding 
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G l ( S 1  I R 1  R2 

(a) (b) 
Fig. 1. (a) Conventional op-amp-based inverter, and (b) proposed scheme 
for producing 180" phase difference. 

two highly matched transistors. The main problem with operational 
amplifiers is low gain-bandwidth product (GBWP). In this paper we 
model the amplifier performance and minimize phase errors by using 
matched op-amps. 

11. THEORETICAL ANALYSIS 

To develop the theory for our two-matched-op-amp model, we 
start with a simple first-order transfer function for a conventional 
op-amp-based inverter for producing two 1 SO" out-of-phase signals 
(Fig. l(a)). This method has, however, major limitations at high 
frequencies. We can write down the overall input-output characteristic 
of such a simple inverter as 

where B is the GBWP of the op-amp. As it is apparent in (l), the 
transfer function of the inverter has a pole at w = B/(RZ/R1 + 1) .  
This pole not only causes a decrease in the gain at the frequencies 
above it, but also degrades the output phase characteristic at frequen- 
cies much below it. To reduce this effect several methods have been 
tried. 

One of the most important methods is to use active feedback with 
matched operational amplifiers [3],  and another approach is to use 
composite operational amplifiers [4]. These methods are useful in 
situations where we need to produce a 180" out-of-phase signal 
from a signal that must maintain its phase integrity and can not be 
manipulated by any means. However, some situations exist where 
these two signals are fed into the front-end of the system, so the 
initial phase of the feeding signal is not important, and the only 
important factor is the phase difference between these two signals. 
For this purpose, the use of two matched op-amps (where one of 
them inverts the input signal, with a residual phase error caused by 
the nonideal op-amp characteristics, and the other produces a signal 
with a similar residual phase error) seems to be useful. 

Fig. l@) shows a simple proposed circuit for producing two 
1 80" out-of-phase signals. As mentioned before, the phase difference 
between wO1 and w , ~  is just equal to 180°, if al = u2 and the two op- 
amps match exactly. The two-pole transfer function for each op-amp 
can be written as 

(2)  

where a is the second pole. We can then write down the transfer 
functions of these two amplifiers as 

Be G(s )  = ~ 

s ( s  + a )  

(3)  
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