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V. CONCLUSION

The described method of calibration proved to be simple and ac-
curate. It is particularly suitable for automatic operation. A calibrated
standard can be easily measured versus a number of reference stan-
dards, and this makes results very accurate and credible. Additionally
all standards of the reference group are mutually checked in each
calibration process.
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On the Design and Generation of
the Double Exponential Function

S. C. Dutta Roy and D. K. Bhargava

Abstract—For the double exponential function f(t) =K (e~ — e~ bt),
which is used for impulse testing of electrical components and systems, we
derive an approximate relation between the ratio y,, = T, /Timax, where
Tmax and T}, are, respectively, the times to reach the peak value Fi,,x
and the value Fi,ax /m on the tail of the pulse, and the ratio z = b/a. This
relation is useful for finding « for a prescribed y,,, where m is usually
equal to 2. Our formula is much simpler than that given by Googe, Ewing
and Hess [1], but gives results of comparable accuracy. We also present
a number of RC two-ports, alternative to those of [1], for generating the
test function f(t) from an impulse function 5(t), as well as from the step
function u(t).

I. INTRODUCTION

In a recent paper [1], Googe, Ewing and Hess considered the double
exponential function
fO=K@E ™~ m
which is often used in testing electrical devices and systems for their
response to lightning and switching transients and electromagnetic
pulse disturbances, and derived the following relationships connecting
the parameter z = b/a, Tmax = time at which f(¢) reaches the
maximum value Fi,.x and T, = time at which f(t) attains the value
Finax/2 on the tail of the pulse (see Fig. 1)
aTmox = (Inz)/(z - 1) 2)
Y T :

—1nd0.5 e—(ln z)/(z—1) _ e—a:(ln z)/(z—1)

~ ~10{05] 1} S
(ma)/(— 1)

While (2) is an exact relationship, (3) is an approximate one’, based

on the practical situation that b 3> a, i.e. > 1. The latter equation

has to be solved for z for a prescribed y. An iterative procedure for

the purpose has been given in [1], based on the observation that a

first guess for x is © = 10y.

In this paper, we first derive a relation between y and x, which is
simpler than (3). We next carry out a detailed study of the problem of
synthesizing an RC two-port which will generate f(t) in response to
an excitation of the form of §(¢) or u(t), where §(¢) and u(¢) denote
the unit impulse and unit step function, respectively.

II. DERIVATION OF THE RELATION BETWEEN y AND
Maximizing (1) gives the condition
e PTmax — (1/x)efaT’““. “

This is the same as (2), expressed in a different form. Now from
(1) and (4),

Frmax = f(Tmax) = Ke™*Tmx[1 = (1/=)). ©)
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1t may be mentioned in passing that (9) of [1] is wrong. Equation (3) as
given here is the correct form.
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Fig. 1. Plot of the double exlﬁonential function (1). The authors of [1]
considered m = 2 and used 7, for 15.

Let T\, be defined by f(Tm) = Fmax/m at the tail end of (1). This
is a generalization of 7', of [1], for which m = 2. Thus

emTm _ g7t o gmalm - o=oTmax[1 _ (1/2)]/m.  (6)
where we have used the fact that & 3> a so that e 7™ > ¢~ bTm,
From (6), we get

Y = T/ Tmax = 1+ {lafme/(z — D]}/ (0Tmax). (D

In (7), if we substitute the value of aTim.x from (2) and use the
approximation x >» 1, then we get

Ym = 1+ z(lnom)/(Inz). 8)
For the half-peak case, we have m = 2 so that
ye = 14+ 0.693z/(Inz). 9)

This is a much simpler equation than (3). Computation shows that
for # = 10,100 and 1000, y; = 4.01,16.05 and 101.34 respectively,
the corresponding values of y (from (3)) being 4.12, 16.12 and
101.38. The difference therefore lies only in the fractional part, and
it decreases with increasing z.

III. RC TwO-PORT SYNTHESIS FOR GENERATING
(1) FROM A UNIT IMPULSE EXCITATION

As noted in [1], if a two-port is to produce (1) at the output with
a unit impulse as the excitation, then its transfer function should be

G(s) = LIF®]/LI6(D)]
= K(b-a)/l(s +a)(s +D)]-

Identifying this as —y21/y22, and taking ya2 as (s+a){s+b)/(s+c),
where a < ¢ < b, the authors of [1] obtained the ladder realization of
Fig. 2, and claimed that the choice of ¢ would affect the gain of the
two-port and hence K. This was justified through another network,
shown in Fig. 3, which is substantially different from the network of
Fig. 2 in architecture as well as excitation. We shall deal with both of
these networks as well as some possible alternative designs in detail.

First, look at Fig. 2 and note that the d.c. gain of the network,
G(0), is unity, so that from (10),

K =ab/(b— a). 11)
This is independent of ¢, and so is the output
vo(t) = [ab/(b — a)}(e™* — e™*) (12)

_contrary to the assertion made in [1].

(10)

Fig. 3. Impulse generating network used in [1] to justify an optimum choice
of the parameter c. )

Straightforward analysis of the Fig. 2 network gives
G(s) = (C1C2 R Ry) ™/ .
{s” + s[(C2R2) ™ + (C1R1) ™" + (C1R) ']
+ (01023132)71}
= ab/[s* + s(a + b) + ab] (13)
where the latter form follows from a combination of (10) and (11).
Comparing the coefficients of the two forms, we get -
(C1CoR1Ry)™" = ab (14)
(C2Rs) " +(CiR) ™ 4+ (CiRs) ' =a +b. (15)
Since there are four elements, and only two constraints, we are free
to choose two elements as per convenience and calculate the other
two in terms of these. Accordingly, several designs are possible, as
illustrated by the following special cases.
Case 1-Equal Capacitor Design: Let C1 = Cy = () then (14)
and (15) give
G1G2 = abC? (16)
G1+2G2 = (a+b)C {amn
where G; = 1/R;, i = 1,2. Combining (16) and (17), one can obtain
a quadratic equation in G2 (or in G'1), the solution of which is

Gz = [(a+b)C/4{1£[1 — 8ab/(a+b)*]*?). (18)
Thus G2 has two possible values, provided, -of course, that
8ab < (a +b)”. 19)
Equation (19) can be put in the form .
[b — (3+ VB)a][b — (3 — vB)a] > 0. (20)

Since, in practice, b/a > 1, the only acceptable condition for
satisfying (20) becomes )

b/a > (3++/8) =5.83. @21)
With the notation
d=[1—8ab/(a+b)*]*/? ©2)
we can now summarize the equal capacitor design as
Ci=C=C
b/a > 5.83
(23)

Ry = (a+b)(1£ d)/(4ab0)
Ry = (a+b)(1Fd)/(2ab0).
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Case 2-Equal Resistor Design: With R; = R, = R, (14) and
(15) give

D1D; = abR? 24)

Dy +2D; =(a+b)R (25)

where D; = 1/Cj, i = 1,2. The similarity of these equations with
(16) and (17) allows us to write down the design equations without
- further analysis as

Ri=R;=R

b/a > 5.83
Cr=(a+0b)(1F¥d)/(2abR)
Cz = (a+b)(1xd)/(4abR).

Case 3—-Design Given by Googe, Ewing and Hess [1]: In [1], C»
was normalized to 1 F and Ry came out to be 1/(a + b — ¢), where
a < ¢ < b. Thus, from (14) and (15), we get

(26)

(CiR) ' =ab/(a+b—¢) 01))
(Ri'+a+b—c)Cit=c. (28)

Solving these equations, we get
Ci=(a+b—ec)?/[clat+b=c)— ab| 29

Ry =[c(a+b—c)—ab]/[abla+b—c)].
These are the same values as given in [1].

IV. NETWORK SYNTHESIS FOR GENERATING
f(t) FROM A UNIT STEP FUNCTION

We now consider the network of Fig. 3, where ) is first charged
to the d.c. voltage V1, and then the switch-is closed at ¢ = 0. By
Thevenin’s theorem, this network is equivalent to that of Fig. 4.
Clearly, this is a bandpass network (in contrast to Fig. 2, which is
a lowpass network) excited by a step function voltage Vi u(t). By
elementary analysis, the transfer function for this network is obtained
as

Ga(s) = (CaRa) 's/{s* +[(C2R2) ™" + (CiRy) ™"

+ (ClRl)_l]S-l- (ClcleR;;)_l}. (30)

When excited by a unit step voltage u(t) (Vi is assumed to be
unity, for convenience and without any loss of generality), the output
voltage transform would be

Vo(s) = (1/5)Ga(s)
= (CoRe) ' /{s* + [(CaR2) ™" + (C1Ry) ™

+(Ci1R) s+ (C1CaRiRe) '} (3D)
Clearly, this is of the form (10) with
K(b—a)=(CaR2)™"
(CoR2) '+ (C1R1) '+ (C1R2) ' =a+10
(C1C2R1Ry) ™! = ab. (32)

Hence, as claimed correctly in [1], v,(¢) will be of the form (1). If
the same elements as those for the lowpass network of [1] (which is
the same as Case 3 of the previous section) are used, then we get

K =1/[CoR;(b—a)]=(a+b—2¢c)/(b— a). (33)
This shows that indeed, the peak value of the generated pulse now
depends on c, and ¢ = 0 gives the highest value. However, because
a < c¢<b,and b > a, ¢c = 2a is quite an acceptable value, giving
K = 1.

R2

X
1 b=0

Vq igh €2

T

Fig. 4. Thevenin equivalent of the network of Fig. 3.
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Fig. 5. A possible network realization of (36).
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Fig. 6. Another candidate network for realizing (36).

For the element values of Case 1 of the preceding section (equal
capacitor design), we have from (23) and (32), -

K = (b+a)(1 £ d)/[4(b - a)]. (34)

Using the positive sign in (34) gives a higher K; this corresponds to
the negative sign in Ry given by (23). The highest possible value of
K is obtained when b > @ and b >> 8, and this value is 1/2, which
is half of that obtained from the design of [1].

For the Case 2 design (with equal resistors), we get from (26) and
(32),

K = (b+a)(1Fd)/[2(b - a)).

Once again, the positive sign gives a higher value of K, which
corresponds to the negative sign in Cz given by (26). The highest
possible value of K here is unity (with b > a and b > 8), in
contrast to the Case 1 design. Hence, equal resistor design is to be
preferred compared to equal capacitor design. Compared to both of
these designs, however, the design of Googe, Ewing and Hess [1]
has an edge with respect to the peak voltage obtained.
The bandpass transfer function of the form

Ga(s) = K(b—a)s/[(s + a)(s + )]

can also be realized by either of the two networks shown in Figs. 5
and 6. For the former,

- (3%)

(36)

(C2R:) ' =K(b—a)
(CiR) ™" +(CeRe) ™ + (CeR1) ' =a+b

‘ (C1C2R1Ry) ™! = ab. 37
while for Fig. 6, the corresponding relations are
(CiR)™ "= K(b—a)
(CiR1) ™'+ (C2R:) '+ (CiR) ' =a+b
(CL1C2R1R2) ™! = ab. (38)
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Equal capacitor or equal resistor designs can now be easily derived
by appropriate replacements in the results for the network of Fig. 4.

V. CONCLUSION

A formula, simpler than the existing one, has been given for the
design of the double exponential function f(t) = K(e™* — ™).
Also, the problem of synthesizing an RC two-port for generating
f(t) from an impulse or step excitation has been discussed in detail,
and several alternative designs and structures have been presented
. for this purpose.
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Producing 180° Out-of-Phase Signals
From a Sinusoidal Waveform Input

Hossein Golnabi and Ashkan Ashrafi

Abstract—In this paper a simple and novel method for preducing
two signals with 180° phase difference has been introduced. The phase-
balanced signals are produced from a single sinusoidal input signal using
two matched op-amps. The phase accuracy of the propesed circuit due
to mismatched components is investigated with a two-pole model for the
operational amplifiers. With high-precision integrated cireuits, the phase
error at the amplifier pole frequency (2 MHz) is calculated to be about
0.5° which is a remarkable achievement. The discrete implementation of
this scheme is also discussed, and there is a good agreement between the
experimental results and the calculated values. The main features of this
circuit make it suitable for use in bridge measuring systems and lock-in
amplifiers.

1. INTRODUCTION

In many instrumentation systems, the existence of two 180° out-of-
phase sinusoidal signals is essential. These two signals could be used
for increasing the sensitivity of bridge circuits such as a Wheatstone
bridge, which can be used for measuring an unknown resistor in strain
gauge systems [1]. The other great advantage of two well-balanced
180° out-of-phase signals is the ability to eliminate the effects of
offset in lock-in-based systems [2]. The accuracy and reliability of
such signals are, therefore, very important in the performance of
high-precision measuring instruments. At low frequencies, generating
such signals is not a complicated task, but for high frequencies the
effects of nonideal circuit elements will cause deterioration from the
ideal response. Two traditional remedies exist for this problem; the
first is to use a transistor pair as a differential amplifier, and the
second is to use an operational amplifier in the inverting mode. The
former is a well-known method, but it has several limitations such as
low permissible input voltage levels, and the requirement of finding
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Fig. 1. (a) Conventional op-amp-based inverter, and (b) proposed scheme
for producing 180° phase difference.

two highly matched transistors. The main problem with operational
amplifiers is low gain-bandwidth product (GBWP). In this paper we
model the amplifier performance and minimize phase errors by using
matched op-amps.

II. THEORETICAL ANALYSIS

To develop the theory for our two-matched-op-amp model, we
start with a simple first-order transfer function for a conventional
op-amp-based inverter for producing two 180° out-of-phase signals
(Fig. 1(a)). This method has, however, major limitations at high
frequencies. We can write down the overall input-output characteristic
of such a simple inverter as

Vo _ —RsB/Ry @

Vio (Ro/Ri+1)s+B i
where B is the GBWP of the op-amp. As it is apparent in (1), the
transfer function of the inverter has a pole at w = B/(Ry/R; +1).
This pole not only causes a decrease in the gain at the frequencies
above it, but also degrades the output phase characteristic at frequen-
cies much below it. To reduce this effect several methods have been
tried.

One of the most important methods is to use active feedback with
matched operational ‘amplifiers [3], and another approach is to use
composite operational amplifiers [4]. These methods are useful in
situations where we need to produce a 180° out-of-phase signal
from a signal that must maintain its phase integrity and can not be
manipulated by any means. However, some situations exist where
these two signals are fed into the front-end of the system, so.the
initial phase of the feeding signal is not important, and the only
important factor is the phase difference between these two signals.
For this purpose, the use of two matched op-amps (where one of
them inverts the input signal, with a residual phase error caused. by
the nonideal op-amp characteristics, and the other produces a signal
with a similar residual phase error) seems to be useful.

Fig. 1(b) shows a simple proposed circuit for producing two
180° out-of-phase signals. As mentioned before, the phase difference
between v,1 and vog is just equél to 180°, if a; = ay and the two op-
amps match exactly. The two-pole transfer function for each op-amp
can be written as

Ba
s(s+ @) @
where « is the second pole. We can then write down the transfer
functions of these two amplifiers as

Bix
(al + 1)5(3—1§~a114)
sy (a1

G(s) =

Hi(s) = (3)
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