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Abstract—Transient pulses for electromagnetic compatibility problems,
such as the high-altitude electromagnetic pulse and ultrawideband pulses,
are often described by a double-exponential pulse. Such a pulse shape is
specified physically by the three characteristic parameters rise time tr ,
pulsewidth tfwhm (full-width at half-maximum), and maximum amplitude
Emax . The mathematical description is a double-exponential function with
the parameters α, β, and E0 . In practice, it is often necessary to transform
the two groups of parameters into each other. This paper shows a novel
relationship between the physical parameters tr and tfwhm on the one hand
and the mathematical parameters α and β on the other. It is shown that
the least-squares method in combination with the Nelder–Mead simplex
algorithm is appropriate to determine an approximate closed-form formula
between these parameters. Therefore, the extensive analysis of double-
exponential pulses is possible in a considerably shorter computation time.
The overall approximation error is less than 3.8%.

Index Terms—Double-exponential pulse, high-altitude electromagnetic
pulse, Nelder–Mead, parameter estimation, pulsewidth, rise time, ultraw-
ideband pulse.

I. INTRODUCTION

A brief introduction about double-exponential pulses and their im-
portance for the electromagnetic compatibility is summarized in [1].
For practical application, it is often necessary to transform between
the physical parameters rise time tr , pulsewidth tfwhm (full-width at
half-maximum), maximum field strength Em ax , and the mathematical
parameters α, β, and E0 .

A very effective relationship that uses only four assistant variables
is established in [2]. Since these four variables have different values
for different ratios of β/α to give a reasonable overall fitting error,
this is not very straightforward. With the help of the least-squares
method and the Nelder–Mead algorithm, an estimation of the physical
parameters from the mathematical ones is applied in [3]. Unfortunately,
these equations cannot be used for the inverse transformation. The main
idea of this paper is to give closed-form formulas for the mathematical
parameters of the double-exponential pulse from the physical ones with
a method that is based on the algorithm presented in [3]. Finally, the
estimation errors are analyzed and shown.

II. DOUBLE-EXPONENTIAL PULSE SHAPES

The double-exponential shape is given in [1] as follows:

E(t) = E0k
(
e−α t − e−β t

)
h(t) (1)

where E0 is the amplitude, α and β are the characteristic mathematical
parameters, and h(t) is the unit-step function. The amplitude factor k
is necessary to create different double-exponential pulse shapes with
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variable parameters, but a constant amplitude. Therefore, k is given
in [3] by

k = k(α, β) =
[
e
−α

ln (α / β )
α −β − e

−β
ln (α / β )

α −β

]−1

. (2)

With the additional k-factor, the maximum amplitude can be con-
verted by Em ax = E0 .

III. NUMERICAL SOLUTION FOR THE CORRELATION BETWEEN (α, β)
AND (tr , tfwhm )

Nevertheless, the physical and mathematical parameters have to be
transformed by solving a nonlinear system of equations, which cannot
be solved analytically. As stated in [2], for an effective numerical
solution, it is convenient to use the double-exponential function not as
a function of β and α, but as the ratio of both

λ =
β

α
. (3)

For a pulse with positive polarity, α < β and λ > 1. In the same
manner, the physical parameters should not be the pulsewidth tfwhm

and rise time tr , but also the ratio of both

μ =
tfwhm

tr

. (4)

It has been shown in [2] that μ > 4.291 for all double-exponential
pulses. Using only the ratios has the following advantage: if two pulses
have the same ratio λ, they will also have the same μ. If the parameters
α and β of one pulse are larger than α and β of another pulse with
the same λ by a determined factor, then tr and tfwhm will be lower by
that factor and vice versa. One can also say that (α, β) and (tr , tfwhm )
of two pulses are reciprocally proportional to each other, if these two
pulses share the same λ and μ. The advantage of this simplification
is that the nonlinear optimization has to be performed only in one
dimension and not in two, as in [3].

A. Determination of (tr , tfwhm ) From (α, β)

The rise time tr can be calculated by tr = t90% − t10% . The instants
of time t10% and t90% can be found by an iterative approach

t10% , i+1 = −
log

(
e−α t1 0 % , i − (0.1/k)

)
β

(5)

t90% , i+1 = −
log

(
e−α t9 0 % , i − (0.9/k)

)
β

(6)

with the starting parameters

t10% ,1 = − log (1 − (0.1/k))
β

t90% ,1 = − log (1 − (0.9/k))
β

. (7)

The iteration ends if the relative error between tr,i and tr,i+1 is
smaller than a preset accuracy. This procedure is more precise, but
also more time-consuming than using the closed-form formulas given
in [3]. The normalized rise time for different values of 1 < λ ≤ 200 is
shown in Fig. 1. The pulsewidth tfwhm can be calculated with a similar
approach. The normalized pulsewidth is also plotted in Fig. 1.
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Fig. 1. Rise time tr and pulsewidth tfwhm normalized to α for different ratios
of β to α.

Fig. 2. Parameters α and β normalized to tr for different ratios of tfwhm to
tr .

B. Determination of (α, β) From (tr , tfwhm )

The determination of α and β from tr and tfwhm is much more
difficult. For a first start, the very rough approximations

α =
1

tfwhm
and β =

1
tr

(8)

are used. Then, a search algorithm is started. The parameters α and
β are slightly changed in a specific interval upward and downward in
each step. The pulsewidths and rise times are calculated for each step,
as described in Section III-A. These calculated physical parameters
are compared to the target parameters for each changed variant of α
and β. At the end of each step, the best fitting variant is chosen as
the start for the next step. If the best fitting variant is the same as
the previous step, the specific interval of change is decreased by half.
Therefore, the search is quite fast at the beginning and becomes more
and more precise near the end. This is done until the desired pulse
parameters tr and tfwhm , and the calculated parameters have a relative
error that is smaller than the preset accuracy. This procedure is quite
simple, but very time-consuming. Even so, it offers the possibility to
transform the physical parameters of the double-exponential pulse to
the mathematical ones. The normalized parameters α and β are plotted
for different ratios μ in Fig. 2. The calculation error is only a matter of
time and can be as low as 10−15 .

TABLE I
PARAMETERS OF THE APPROXIMATION OF α

TABLE II
PARAMETERS OF THE APPROXIMATION OF β

IV. APPROXIMATION WITH CLOSED-FORM FORMULAS

Because of the hyperbolic character of α · tr in Fig. 2, a modified
hyperbolic function was chosen to approximate the exact value of α

αapprox =
1
tr

· X1(
(tfwhm /tr )

X 2 − X3

)X 4
. (9)

X1 , . . . , X4 are the dimensionless parameters of the approximation
model. Due to the exponential character of β · tr , which is shown in
Fig. 2, and the desire for a simple mathematical expression, a sum of
three exponential functions was selected to approximate the precise
magnitude of β

βapprox =
1
tr

·
[
Y1 − Y2 · e−

t fw h m
t r

·Y 3

− Y4 · e−
t fw h m

t r
·Y 5 − Y6 · e−

t fw h m
t r

·Y 7

]
. (10)

This approximation model has seven dimensionless parameters
Y1 , . . . , Y7 . Using a sum of more exponential functions would be
more precise, but would also require more parameters. The closed-
form approximation formulas are used with the criterion to minimize
the following sums in a specific region μ ∈ [μm in , μm ax ]:[

μm a x∑
μm in

(α − αapprox )2

]
X 1 , . . . ,X 4−→ min (11)

[
μm a x∑
μm in

(β − βapprox )2

]
X 1 , . . . ,X 4−→ min. (12)

This is known as the least-squares method [4]. By applying of the
Nelder–Mead algorithm [5] in the region < μ ≤ 1000, the parameters
shown in Tables I and II for the approximation of the mathematical
parameters α and β from the physical ones tr and tfwhm can be derived.

A comparison between the exact numerical and approximated an-
alytical solution for α and β can be found in Figs. 3 and 4. Despite
these plots being logarithmically scaled in both axis directions, almost
no differences between the exact and the approximated curve can be
found.

V. ANALYSIS OF ESTIMATION ERRORS

The relative errors are used to examine the precision of the method.
The estimation errors in (9) and (10) are less than 3.8% and 3.2%,
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Fig. 3. Comparison of exact and approximated values of the parameter α
normalized to tr for different ratios of tfwhm to tr .

Fig. 4. Comparison of exact and approximated values of the parameter β
normalized to tr for different ratios of tfwhm to tr .

Fig. 5. Relative estimation errors of α and β for different ratios of tfwhm to
tr .

respectively, in the interval 4.291 ≤ μ ≤ 1000. These estimation errors
are plotted in Fig. 5. As compared to the approximation that was derived
in [2], the relative error in this paper increased marginally, but the
presented approach does not require a lookup table. The relative error
is still lower than the error that results from the approximation formulas
that were developed by the 2-D optimization in [3]. All discussed
approximations are computationally much more efficient than solving
the nonlinear system of equations numerically.

VI. CONCLUSION

This paper shows that the Nelder–Mead simplex algorithm in com-
bination with the least-squares method is appropriate to determine
the relationship between the commonly used physical parameters: rise
time and pulsewidth, and the mathematical parameters α and β of
double-exponential pulse shapes. With the help of these approximate
correlations, it is possible to perform an extensive analysis of double-
exponential pulse shapes with a very wide range of parameters in a
considerably smaller computing time. The estimation errors of α and
β are all less than 3.8%.
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CMOS OpAmp Resisting to Large
Electromagnetic Interferences

Anna Richelli

Abstract—A CMOS operational amplifier with high immunity to elec-
tromagnetic interferences is presented. It is based on an easy modification
of the differential pair with active current load. The proposed input stage
can be fabricated in standard CMOS technologies, and it neither requires
extra mask levels, such as triple well, nor external components. Analysis
and results are provided for very large interferences, which arise from the
input pin.

Index Terms—CMOS, immunity to electromagnetic interferences
(EMIs), ICs, operational amplifier (OpAmp).

I. INTRODUCTION

Due to the increasing adoption of electronic and microelectronic
equipments, the immunity to electromagnetic interferences (EMIs) has
become an important constraint for IC designers. The effects of EMI,
indeed, may involve a wide class of circuits. Furthermore, the level
of electromagnetic environmental pollution has been increasing during
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