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Analysis of pulse waveform is a low cost, non-invasive method for obtaining vital information related to
the conditions of the cardiovascular system. In recent years, different Pulse Decomposition Analysis
(PDA) methods have been applied to disclose the pathological mechanisms of the pulse waveform. All
these methods decompose single-period pulse waveform into a constant number (such as 3, 4 or 5) of
individual waves. Furthermore, those methods do not pay much attention to the estimation error of the
key points in the pulse waveform. The estimation of human vascular conditions depends on the key
points' positions of pulse wave. In this paper, we propose a Multi-Gaussian (MG) model to fit real pulse
waveforms using an adaptive number (4 or 5 in our study) of Gaussian waves. The unknown parameters
in the MG model are estimated by the Weighted Least Squares (WLS) method and the optimized weight
values corresponding to different sampling points are selected by using the Multi-Criteria Decision
Making (MCDM) method. Performance of the MG model and the WLS method has been evaluated
by fitting 150 real pulse waveforms of five different types. The resulting Normalized Root Mean Square
Error (NRMSE) was less than 2.0% and the estimation accuracy for the key points was satisfactory,
demonstrating that our proposed method is effective in compressing, synthesizing and analyzing pulse

waveformes.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The arterial pulse waves in all their forms, pressure, volume or
flow, contain the information about the cardiovascular system
such as heart rate, pulsatile pressure and arterial distensibility;
therefore, they are often used by clinicians in the assessment of
health and the early prediction of cardiovascular diseases. The
arterial pulse wave is generated by the heart and propagated
through the arterial tree. The increase in blood volume in the
artery causes a transient increase in pressure which depends on
the property of the arterial wall as well as the resistance of the
peripheral vessels and tissues. Sphygmograph, an instrument for
graphically recording the form, strength, and variations of the
arterial pulse, was developed in 1854 by the German physiologist
Karl von Vierordt (1818-1884). Currently, it has been employed as
an external, noninvasive device to record the pressure pulse wave
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and to estimate the blood pressure. Photoplethysmograph (PPG), an
optical, non-invasive, and easy-to-obtain technique, has been used
for capturing Digital Volume Pulse (DVP) signals from peripheral
pulse sites (e.g. fingers, earlobes, toes etc) [1-3]. Despite the fact
that the morphologies of pulse waveforms acquired by different
kinds of sensors at different sites vary greatly, they all contain
similar information of peripheral pulse waves [3] and can provide
important clinical information related to the conditions of the
cardiovascular system [4-7].

A single period of pulse wave is composed of an ascending limb
and a descending limb, as illustrated in Fig. 1. The percussion wave
consists of a portion of the ascending limb and a portion of the
descending limb of a pulse wave; the tidal wave, dicrotic notch
and dicrotic wave constitute the remaining portion of the des-
cending limb of a pulse wave. Prior to the dicrotic notch, the wave
reflects the condition of heart systole, whereas the wave after the
notch reflects the condition of the periphery. Peripheral resistance
can influence the dicrotic wave. Arterial compliance also has a
notable influence on pulse waves. The key points such as the crests
and troughs of pulse waveform contain clinic information on
human cardiovascular systems. Similar to the constitution of the
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Fig. 1. Schematic figure of pulse wave.

Fig. 2. Digital volume pulse (DVP) (upper panel) and its second derivative (lower
panel). (a) The illustration of a, b, ¢, d and e waves in SDDVP and (b) the five waves
do not always exist in SDDVP.

peripheral pressure pulse wave, a DVP waveform comprises a systolic
component arising from pressure waves propagated from the aortic
root to the finger and a diastolic component arising from pressure
waves reflected backward from peripheral arteries mainly in the
lower body, which then propagate to the finger. The reflected waves
produce an inflection point or second crest in the DVP [8,21-23].

Commonly used parameters of DVP are pulse duration, Aug-
mentation Index (Al), Reflection Index (RI), Pulse Transit Time
(PTT), Pulse Wave Velocity (PWV) and so on [8]. There are other
ways to assess some of these parameters, such as CT, MRI, and
ultrasound techniques [4,9]. However, these methods are more
expensive and less convenient than the measurement and analysis
of peripheral pulse waveforms. Therefore, many methods for pulse
parameter estimation based on peripheral pulse waveforms have
been proposed [10-18].

The Double Differentiation analysis [10-12,19] was applied to
estimate pulse parameters from the five sequential waves called q,
b, ¢, d and e waves (Fig. 2(a)), which are demonstrated in the
Second Derivative of Digital Volume Pulse (SDDVP), defined as
d’DVP/dt?, sometimes being named as the acceleration photo-
plethysmogram. The advantage of this method is its simplicity and
the possibility to be used in real-time. But its performance will
degrade when the DVP signal is weak and noisy, especially when
the diastolic part of the DVP waveform monotonically decreases
[12]. As shown in Fig. 2(b), the a, b, ¢, d and e waves, which are
notable in Fig. 2(a), cannot be easily detected from the DVP shown
in Fig. 2(b).

In order to extract some features from the pulse wave more
effectively, the Pulse Decomposition Analysis (PDA) method, which
decomposes a pulse waveform into several individual component
waves, has been developed in recent years [13]. This method extracts
the parameters by fitting DVP waveform with four or more individual
waves [13-15,24-29]. At present, several different PDA methods have

been proposed, some of which decompose DVP waveform into two
components for compressing and analyzing [4,14-20], such as the
attempt by Westerhof et al. to separate a pressure pulse wave into
two parts by a triangular wave of duration equal to the ejection time
[16]. Jan G. Kips et al. proved that an approximation of reflected wave
by using a triangular flow wave had limited accuracy [17], then they
proposed a physiological flow wave approximation method, which
yields a significantly better agreement between approximated and
actual Reflection Magnitude (RM), but considerable deviations still
persist [17]. A Two-Pulse Synthesis (TPS) model presented by
Goswami et al. [4] successfully reconstructed DVP waveforms using
Raleigh functions with small Mean Square Error (MSE), which is less
than 0.005 when the amplitude of DVP waveform is normalized; but
when three or more crests exist in the DVP waveform, the TPS
model fails.

A Gaussian wave has a similar morphology to the pulsatile
components in a pulse wave and the Gaussian model is very
efficient in that a relatively complex waveform can be represented
by using a very small set of parameters, allowing the pulse wave to
be represented by a combination of Gaussian waves [13-15,24-
27]. Qian Weili et al. decomposed a pulse wave into three Gaussian
waves for synthesis [13]. Rubins et al. explored the use of two or
four Gaussian waves to synthesize and to approximate a portion of
or the whole of a DVP waveform [14]. Martin C. Baruch et al.
proposed a new PDA model of arterial pulse wave by decomposing
it into five individual pulses [15]. Two parameters, transit time
of the reflected wave (RTT) and Augmentation Index (Alx), are
calculated by analyzing time intervals between the crests of these
individual pulses and the amplitude relation of these crests [15].
However, these researches pay no attention to the fitting accuracy
in those key points of pulse wave. Actually, the fitting error of
these crests can greatly influence the calculation of the parameters
such as RTT, Alx and so on.

All the methods mentioned above separate a DVP wave into
two or more waves, but they all have limitations in terms of
accuracy [16,17] or flexibility [4,15,24-27]. In order to develop a
simple and effective algorithm for extracting component waves of
DVP, an adaptive Multi-Gaussian (MG) model is proposed to fit
DVP waveform using a combination of four or five Gaussian waves
in our study [28]. In addition, a Weighted Least Squares (WLS)
method is applied to estimate the MG parameters by putting
more emphasis on the estimation accuracy of the key points
when fitting DVP waveforms without sacrificing the MSE of the
estimation.

In comparison with the paper published in IEEE ICIA2011 [28],
there are some enhancements as follows:

® The motivation of this paper is fully explained in the intro-
duction.

® The effect of Multi-Gaussian fitting with different number of
Gaussians was demonstrated in details, as demonstrated in
Section 2.1.

® The proposed algorithm was further described in Section 3.

® The influence of the weight value was further discussed in
Section 4.3.

® The four types of pulse waves were changed into five types.

® [n this paper, the size of samples has been added into 150
samples, each type of pulse wave including 30 samples.

The paper is organized as follows. The MG model and the
corresponding parameter estimation method are introduced in
Section 2. The procedure of data acquisition, pulse decomposition
and parameter optimization are described in Section 3. In Section 4,
a brief discussion on the performance of MG model and the efficacy
of WLS is presented. Finally, the conclusion is made in Section 5.
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2. Methods
2.1. Multi-Gaussian model

A single-period DVP can be decomposed into forward and
backward components as illustrated in Fig. 3. In a pulse waveform,
the dicrotic notch, a short time gap related to the backflow, is
caused by the closing of the aortic valve [14]. Detailed analysis of
DVP waveforms reveals that pulse wave consists of several
individual component waves, the first of which is due to the
left ventricular ejection from the heart while the remaining

Amplitude

Pulse wave

Dicrotic notch

Forward wave Backward wave

>

Time

Fig. 3. A pulse wave, its forward and backward waves.
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component waves are the reflections and re-reflections that
originated from the reflection sites [29,30]. Therefore, pulse wave
has been considered as the superposition of several Gaussian
waves [13-15]. In [14], Rubins et al. tried to describe a DVP
waveform as a superposition of four Gaussian waves; while in
[15], Martin C. et al. regarded a DVP waveform as a superposition
of five individual component waves.

Let g(t, @) represent the discrete version of a 1D Gaussian
function, and ©= [H, u, o] be the unknown parameter vector,
g(t, @) is defined as

2
ga@»:mep<52£)> 1)

where H is the amplitude of the crest, u is the time position of the
crest, and ¢ is related to the width of the Gaussian wave. An MG
model, denoted as fyg(t), is a sum of Gaussian waves as follows:

M
fueO= 2 (.6 @

where, M is the number of the Gaussian waves.

Fig. 4 illustrates a pulse wave and its MG decomposition results
using 3-7 Gaussian waves using the MSE criterion, respectively.
The percussion wave of pulse wave is asymmetry, which needs to
be approximate by two or more Gaussian waves. Therefore, at least
three Gaussian waves should be used to approximate a whole
single-period pulse wave. The red arrows in Fig. 4(b)-(e) illustrate
the effect of increasing the number of Gaussian waves, which
demonstrates that using more Gaussian waves can only improve

— Original pulse wave
------- Fitted pulse wave
-~ Gaussian waves

— Original pulse wave
"""" Fitted pulse wave
— - — - Gaussian waves

—— Original pulse wave
"""" Fitted pulse wave
-~ Gaussian waves

—— Original pulse wave | |
"""" Fitted pulse wave
— -~ Gaussian waves

Fig. 4. Pulse wave and its MG decompositions using 3(a), 4(b), 5(c), 6(d), 7(e) Gaussian waves, respectively. (a) Pulse wave and its MG decompositions using three Gaussian
waves; (b) Pulse wave and its MG decompositions using four Gaussian waves; (c) Pulse wave and its MG decompositions using five Gaussian waves; (d) Pulse wave and its
MG decompositions using six Gaussian waves; (e) Pulse wave and its MG decompositions using seven Gaussian waves. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 5. The NRMSEs of the approximations of the pulse wave in Fig. 4 by using three
to twenty-one Gaussian waves.

the accuracy of the approximation in the starting and ending parts
of the pulse wave. Fig. 5 shows the Normalized Root Mean Square
Error (NRMSE) of the approximations of the pulse wave in Fig. 4 by
using three to twenty-one Gaussian model fitting methods.

The diagnosis from pulse wave is similar to that from ECG [31].
In the digital signal processing of ECG, Gavin P. Shorten et al. used
the total percentage root-mean square difference (PRD) as the
criterion to evaluate the performance of the ECG compression
algorithms. They set 2.5% as the acceptable PRD for ECG compres-
sion [32]. To quantify the performance of the MG decomposition
method, we proposed three parameters, namely Errx, Erry and
NRMSE. The related report on the acceptable threshold for the
evaluation criterion for decomposing pulse wave has not been
found. The parameter NRMSE is similar to the PRD of ECG signal.
Here, we set the acceptable threshold of NRMSE as 2%. For the
pulse wave illustrated in Fig. 4, five Gaussian waves are enough to
approximate at the accuracy of NRMSE being less than 2% [31,32].
The least number of Gaussian waves needs to be selected within
the required decomposition accuracy for the convenience of pulse
wave compressing and analysis. Therefore, an adaptive MG model
is proposed in this paper to approximate DVP waveform with the
least number of Gaussian waves (the DVP signals that we have
processed are fitted by 4 or 5 Gaussian waves) within the boun-
daries of the acceptable NRMSE.

2.2. Estimation of the MG model parameters for approximating
pulse wave

The proposed adaptive MG model describes the DVP waveform
as a sum of 4 or 5 Gaussian waves, with each pulse being
determined by the corresponding parameter vector @;= [H;, u;
gi]. Therefore, 12-15 parameters need to be estimated in the
model. The Nonlinear Least Squares (NLS) method has usually
been used for curve fitting, assuming that each observation in the
data set to be fitted has equal importance [33]. However, some
morphological features in pulse waves are more important for
diagnosis, e.g. some key points such as the crests and troughs of
pulse wave. The estimation error of these points should be small
enough for correct diagnosis.

In this paper, the WLS method is used to estimate parameters in
the MG model because the positions of sampling points in DVP have
different degrees of importance. The best fit in the WLS method
minimizes the weighted sum of squared residuals, and the weight
determines how much each observation in the data set influences
the final parameter estimation [33]. The WLS criterion for the MG

model is that the model is optimal when the weighted sum of the
squared residuals Q defined in formula (3) is the minimum.

N
Q= _;1 Wilyi—fuc(Xi, O)F 3)

where (x;, y;) is the time position and amplitude of the ith sampling
point, @ is the vector of unknown parameters and w;
is the weight of the ith sampling point.

To find the value of ® which minimizes Q in the Eq. (3), the
Levenberg-Marquardt Algorithm (LMA), an iterative numerical
algorithm, is applied. LMA interpolates between Gauss—-Newton
Algorithm (GNA) and Gradient Descent Method (GDM). In com-
parison to GDM and GNA, LMA is more robust [34]. First, LMA can
be used to find an acceptable solution even if the initial para-
meters start very far from the final minimum. Second, the second
order derivative or Hessian of the squared error over a window is
used to avoid any shallow region of the error surface once it is
close to the minima. Third, a faster convergence within a few
cycles following a large disturbance can be achieved.

LMA has good performance in the optimization procedure.
When the current solution is far from the optimized solution,
the algorithm behaves like the steepest descent method: slow, but
guaranteed to converge. When the current solution is close to the
optimized solution, it becomes a GNA [34]. Like most numerical
algorithms, LMA involves selecting initial values for the para-
meters. Then, the parameters are refined iteratively till the max
iteration is reached or the termination conditions are matched.
The estimation of initial values will be introduced in Section 3.

3. Pulse decomposition and parameter optimization

Fig. 6 illustrates our proposed MG pulse wave approximation
method that combines WLS and Multi-Criteria Decision Making
(MCDM). In this proposed approach, the noise and baseline
wander of pulse wave is removed firstly [35]; then the single-
period pulse wave is segmented from the processed pulse wave
and fitted using 4-Gaussian model with different weights. Having
employed the multi-criteria decision making strategy to optimize
the weights for the corresponding points of pulse wave, the
accuracy of the fitting will be calculated. If the accuracy is with
in the 2%, the decomposition will be ended; otherwise, the 5-
Gaussian model will be employed.

3.1. Data acquisition and preprocessing

DVP signals were collected from 800 volunteers (500 young
health students at the age of 20-25, 300 patients at the age of
30-80) using a pulse sensor fixed on the left index finger in a
sitting position under controlled environmental condition. Before
the measurements, the volunteers were asked to relax in a sitting
position for 3 min. The duration of measurement was between
120 s and 150 s. The signals were sampled at 1 kHz.

The collected DVP signals were processed offline by our pro-
posed method implemented using MATLAB. At first, data sets were
preprocessed, including the removal of the direct component and
baseline wander component (0-0.1 Hz) by a wavelet-based cas-
caded adaptive filter (CAF) [36], removal of random noise ( > 15 Hz)
by a Savitsky-Golay smoothing filter and detection of all feet of
DVPs. Then, the DVP for each heartbeat period was normalized.

3.2. The decomposition of pulse waves
DVP is classified into four classes by Dawber's analysis on DVP

from 1778 individuals in 1965 and 1966 [37]. In this paper, the four
types defined by Dawber et al. were reclassified into five types,
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Fig. 6. The flow chart of the proposed MG modeling method combining the WLS
and MCDM methods.

where the third type was divided into two types. The class 3 with
bisferiens was divided into the fourth type. Fig. 7 demonstrates
DVP waveforms with different types. To evaluate the performance
of the MG model on different DVP waveforms morphologically, we
selected 150 pulse data whose signal-to-noise ratio is higher than
20 dB from our pulse database for the study (30 pulse data for
each type of DVP).

It is also mentioned that a direct wave and a reflected wave
appears in the forward part of a single-period DVP [14]. Therefore,
in our calculation, we assume that a part of the reflected wave also
appears in the forward part and two or three reflected waves
constitute the backward part in a single-period DVP. In summary,
one direct wave and three or four reflected waves were considered
in the MG decomposition of pulse waves.

The vector parameter ©=|H, u, o] of each decomposed
Gaussian wave is estimated by the amplitude (A;) and the duration
position (D;) of feature points P; (i =1, ..., 4), as shown in Fig. 8,
and P; is extracted by the double differentiation method combined
with our estimation. According to [10,38,39], the positions of the
crests of direct wave and the reflected waves of single-period DVP

Type 1

Type 2

f/

Type 3

Type 4

)l

Type S

/

Fig. 7. Five types of DVP waveforms [26,31]. Type 1: Distinct notch is notable on
the downward slope of the pulse wave. Type 2: No notch develops but the line of
descent becomes horizontal. Type 3: No notch develops but there is a well-defined
change in the angle of the descent. Type 4: No notch develops but there is a notable
reflecting wave in the systolic component of the pulse wave, with bisferiens in the
ascending segment of the pulse wave. Type 5: No notch develops or no change
occurs in the angle of descent.

can be determined by the positions of typical waves defined in
Fig. 2(a) and the zero crossing points of the SDDVP.

In this paper, a single-period DVP is first fitted by a 4-Gaussian
MG model, and then a 5-Gaussian MG is used when the 4-
Gaussian MG cannot meet our criterion (NRMSE < 2%, Errx < 6 ms,
Erry < 0.01). The estimation of the duration D;, D,, D3, and D4
is specified in detail as follows:

Dq: The x-axis position of the first trough of the SDDVP for
all types.

D,: The x-axis position of the SDDVP's first crest after P1.

The first zero-crossing point of the SDDVP is selected if a crest
does not exist before dicrotic notch (the first type and the
second type) or 0.5T* (the third type, fourth type and the
fifth type).

Ds: The x-axis position of the second crest of DVP for the first
type; the position of the first zero-crossing point of the SDDVP
after the dicrotic notch for the second, third and fourth types;
the position of the first zero-crossing point in the time interval
0.4-0.5 T for the fifth type.

D,: The medial x-axis position between P3 and the ending point.

*T is the period of DVP.

When the duration positions of the feature points are determined,
the initial parameters of the decomposed Gaussian waves in the MG
model can be estimated. Table 1 lists the initial values of x, H and ¢ of
4-Gaussian model for decomposition. Fig. 8 shows the estimation
results of the feature points (Fig. 8(al)-(e1)) and the decomposed
Gaussian waves for five types of DVP (Fig. 8(a2)-(e2)).

3.3. Parameter optimization using multi-criteria decision making
Let fpyp(n), 0 <n <N, denote an amplitude-normalized, time-

averaged single-cycle DVP derived from the processed DVP signals,
where ‘N’ is the number of data points contained in fpyp(n).
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Fig. 8. The five types of DVPs, their second derivatives, feature points, and corresponding decomposed Gaussian waves. (a1) The Type 1 DVP, its second derivative and the
estimation of feature points; (a2) The Type 1 DVP and its four decomposed Gaussian waves; (b1) The Type 2 DVP, its second derivative and the estimation of feature points;
(b2) The Type 2 DVP and its four decomposed Gaussian waves; (c1) The Type 3 DVP, its second derivative and the estimation of feature points; (c2) The Type 3 DVP and its
four decomposed Gaussian waves; (d1) The Type 4 DVP, its second derivative and the estimation of feature points; (d2) The Type 4 DVP and its four decomposed Gaussian
waves; (el) The Type 5 DVP, its second derivative and the estimation of feature points; (e2) The Type 5 DVP and its four decomposed Gaussian waves; The (al), (b1), (c1),
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(d1), and (e1) are rough estimation results of feature points; (a2), (b2), (c2), (d2), and (e2) are decomposed Gaussian waves.
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Table 1 According to WLS, the parameters of the MG model are evaluated
Initial estimation of y, H and . by minimizing the following sum:
Parameter H; Ui i 1 N w N
MSE=5 ¥ wlioveM—fucn.OF, W= 3 w, “)
DVP type 1 2 3 4 5 1-5 1 2 3 4 5 n=1 n=1
] VA 07A. oA oA D byf3 In this paper, NRMSE is calculated to evaluate the accuracy of
i= .6A1 /A1 /A1 /A4 1 1 i 1
i_o 08A, 08A, 074, 07A, Dy (Dy-D)3  Df3 th? MG model and is used to compare the fitted results with the
i=3 08A;s 08As 08A; 0JAs Dy  min((T—Ds).Ds)[3 original ones.
i=4 03A, 03A, 03A, 05A, Dy (T—D)3

% NRMSE = Z]r\zlz ]Wﬂ [fDVP(n)_fMG(ny @)]2
N Wafpyp()?
Table 2

Fitted results of five types of pulse wave using MG model. where, fpyp(n) is fitted by fg(n,@) through solving formula (4), w,
is the weight corresponding to the nth point, W is the sum of the
weight vector. The unknown parameter vector @ in fyg(n,@) are
AMG model 12 26 o8 21 10 17 determined by minimizing the MSE in formula (4) using LMA.
5-MG model 18 4 2 9 0 33 Initial values of the unknown parameters in LMA are provided
by the estimation in Table 1.
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In order to find the best weight values to minimize the
absolute-error of key points selected in Section 2 with a limitation
of MSE, a group of 100 different w was tested. In this group,
w corresponding to important points changes from one to one
hundred by step one, while the w corresponding to the other
points maintains a value of one. Furthermore, a hundred fitted
results corresponding to different weight values will be evaluated
by criteria Errx, Erry, and NRMSE.

Errx—sum of absolute errors of X-axis positions between crests
and troughs in fyg(n,0) and fpyp(n).

Erry—sum of absolute errors of amplitudes between crests and
troughs in fy(n,®) and fpyp(n).

As criteria NRMSE, Errx, and Erry may conflict with each other,
finding the best weight vector can be regarded as a MCDM
problem. The preferences in the MCDM theory may be formulated
and expressed in a cardinal vector of normalized criterion pre-
ference weights. Consider Errx, Erry, NRMSE as a1, a,, as and the
fitted results as set F={f1, f>, ..., fi ..., fioo} (fi represents result

corresponding to the ith weight vector) [40]. The optimal weight
is decided according to the decision making theory [41] by the
following steps:

Step 1: Setting up a decision matrix.
There are 100 results to be assessed for each of the three
criteria, a;, a,, as. Therefore, the decision matrix is a 100 x 3
matrix with each element r;; (1 <i< 100, 1 <j < 3) correspond-
ing to the jth criteria value of the ith fitting result. As ay, a,, a3
are cost criteria, ry is calculated by the following formula [34]:
max(a. j)—a;
Ty = max(a.;)— min(a.;)’

©)

where, max(a;) and min(a;) are the maximum and minimum
value of aj, respectively.

Criteria a;, a,, as are normalized by this formula to make sure
0< rij < 1.

Step 2: Setting relative weight value u; for criterion a;.
Relative weight value is normalized (u;+u,+us=1 and
0<u;<1) and decided by the relative importance of criteria.
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waveform in (a).

To minimize Errx and Erry with the limitation of NRMSE, we set
u;=u,=0.35, u3=0.3 according to trials and errors.

Step 3: Calculating the fitness value ¢; for each f; in set F.

In this step, an extreme optimal solution E and an extreme bad
solution B are defined as: E=(ey, €5, €3), B=(by, by, b3), where
ej=max(r;), bj= min(r;) [42]. It is obvious in this case that E=
(1, 1, 1), B=(0, 0, 0). E is an ideal solution that is nonexistent
under general conditions in the MCDM problem. In this paper,
the best solution is obtained by calculating the fitness value c;
for each f; as follows:

= ! ™
;=

1+ (27 [ —rP/ X3 uy(by—ry)P )
A fitness value set C={cy, ¢, ..., Cj, ..., C100} iS Obtained for F=

{fl- f2v cee fi- ceey flOO}-

Step 4: Finding the best solution.

The result f; that corresponds to the maximum fitness value c;
is taken as the best solution.

4. Results and discussions
4.1. Performance of MG modeling

A total of 150 DVP signals were processed and fitted by the MG
Model, 117 and 33 of which are fitted by 4-Gaussian MG and
5-Gaussian MG, respectively. Table 2 shows that 5-Gaussian MG is
used more frequently in the first type than in other types of DVP
waveforms; 4-Gaussian MG can be applied to approximate all the
fifth type DVP waveforms in this study.

The fitted results of the five single-period DVPs illustrated in
Fig. 8 are shown in Fig. 9. Though DVP waveforms of different
types show differences in morphology; they are all well fitted by
the MG model. In general conditions, the residuals between the
normalized DVP waveform and the fitted MG model did not
exceed 2%, except for the 20-40th sampling points after the
starting point and 10-30th sampling points before the ending
point of a single-period DVP.

The degraded performance of MG model at the starting and
ending part of DVP is mainly due to two reasons. First, the
ascending and descending parts of a Gaussian wave and a DVP
waveform have different gradient variation tendencies. To guar-
antee the agreement between the MG model and the DVP wave-
form around the crest segment, the accuracy of the fitting in other
parts cannot be achieved. Second, a small wave may exist at the
ending part of a DVP waveform, especially when the descending
segment after dicrotic notch is very long (exceeding the half of the
DVP period).

4.2. Comparison between the NLS and the WLS

Performances of the NLS and the WLS are compared using the
evaluation criteria Errx, Erry, NRMSE of the MG model. Fig. 10
shows the statistical results of the fitted 150 DVP waveforms. It is
notable that the MG model obtained by the WLS has better
performance than that by the NLS method in Erry and Errx. The
deviations of the positions (in time and amplitude) of the key
points obtained by the WLS method are smaller compared to those
obtained by the NLS method. However, at the same time, the mean
NRMSE of WLS is slightly higher than that of NLS, because
residuals on ordinary points (weighted by the value of one) are
increased, when the WLS method optimizes parameters by putting
more emphasis on reducing residuals on important points
(weighted by the optimized value). Fig. 11 illustrates the statistical
results of a volunteer’s pulse wave for 100 continuous periods. It
is notable that the MG model obtained by WLS has a much better
performance than that by NLS method in Erry and Errx, which
means that the WLS method is more precise because the standard
deviation of parameters obtained by WLS is smaller than that by
the NLS.

In Fig. 12, results of fitting a DVP waveform with the MG model
by the WLS and the NLS algorithms at the starting, the ending and
the crest segments are compared. From these figures it can be seen
that the WLS performs better than the NLS at the area near the
crest of the DVP waveform.
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4.3. Influences of the weight value

In Section 3, 100 different w were tested using the WLS
algorithm to find the optimized weight vector. The criteria Errx,
Erry, NRMSE were used in the MCDM method. With the increment

of the weight values of important points, the fitness value changed
in different ways. Fig. 13 shows four different situations.

Fig. 13(a) illustrates a common situation: when increasing the
weight value on key points, Erry always decrease continuously;
Errx always increase discontinuously because the MG model may
be over weighted; NRMSE always increases, but its variation range
does not exceed 0.3%; The best fitness values always occur at the
range from 20 to 40. However, as Fig. 13(b), (c¢), (d) illustrated,
exceptional cases do exist. In Fig. 13(b), (c), Errx does not change or
even decrease in several DVP waveforms of the fourth type. Due to
the sudden changes in Errx, in Fig. 10(c), an abrupt slope occurs in
Erry. In Fig. 13(c), (d), the optimal fitness values occur in the range
greater than 50 and less than 10, respectively.

Fig. 14 demonstrates the result of the best weights correspond-
ing to the best fitness of the five types of pulse waves, which
indicates that the MG model performs well when the weight value
on important points lies between 20 and 40, while the best
weights for different types of DVP differ slightly.
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5. Conclusions

The decomposition analysis method is effective in compressing,
synthesizing and analyzing physiological signals. There are some
reported researches that decompose physiological signals using
multiple Gaussian models. However, the number of Gaussian wave
is constant. Actually, the number of Gaussian waves depends on the
morphology of physiological signals. Furthermore, those methods
do not pay much attention to the estimation error of the key points
in physiological signals. In fact, the positions of these key points are
important for diagnosis.

To analyze component waves in five types of DVP waveforms, an
adaptive MG model is introduced in this paper. The model closely
approximates a single-period DVP by decomposing it into four or five
Gaussian waves. When applying the MG model to 150 DVP wave-
forms of five different types, it performed well (NRMSE < 2%,
Errx < 6 ms, Erry < 0.01). It should be noted that the choice between
4-MG and 5-MG model is determined by the morphology of the DVP
waveform.

The parameters of the MG model are estimated by the Double
Differentiation method first and then optimized by WLS. Due to the
crests and troughs of DVP waveforms contain clinical information,
the fitted residual error of those points' amplitudes and positions
are required to be smaller by means of assigning the larger weights
to them in WLS. In Section 4, the analysis demonstrated that WLS is
superior to NLS, because the agreement of the MG model achieved
by WLS is better than that by NLS at the crests and troughs of DVP
waveforms.

In order to find the set of weight values in the WLS method that
can obtain the best fitting performance of MG model to DVP
waveform, a group of 100 different weight vectors were tested in
Section 3. The MCDM method was applied to choose the best
weight vector by three criteria, namely NRMSE, Errx and Erry.
Experimental results show that the MG model always performs
well when the weight value for key points lies between 20 and 40.

Component waves of the MG model may relate to the forward
and reflected waves in a single-period DVP. As information of the
forward and reflected waves are useful in arterial parameter
estimation, further research on amplitude and position estimation
of the component Gaussian waves are possibly of great signifi-
cance to the advancement in arterial parameter estimation. This
proposed approach also can be applied to decompose the other
related physiological signals.
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