results.tex 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. %%% lorem.tex ---
  2. %%
  3. %% Filename: lorem.tex
  4. %% Description:
  5. %% Author: Ola Leifler
  6. %% Maintainer:
  7. %% Created: Wed Nov 10 09:59:23 2010 (CET)
  8. %% Version: $Id$
  9. %% Version:
  10. %% Last-Updated: Wed Nov 10 09:59:47 2010 (CET)
  11. %% By: Ola Leifler
  12. %% Update #: 2
  13. %% URL:
  14. %% Keywords:
  15. %% Compatibility:
  16. %%
  17. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18. %%
  19. %%% Commentary:
  20. %%
  21. %%
  22. %%
  23. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  24. %%
  25. %%% Change log:
  26. %%
  27. %%
  28. %% RCS $Log$
  29. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  30. %%
  31. %%% Code:
  32. % !TeX root = main.tex
  33. \chapter{Results}\label{cha:results}
  34. This chapter presents the results achieved using the methods described in \autoref{cha:methods}. Each section in this chapter corresponds to a section in the method chapter with the same name.
  35. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  36. \section{Prestudy}
  37. Since not much was known about the project at this time, it was difficult to find relevant papers on the topic of the standards. Most of the literature was found during the project as new problems was found along the way.
  38. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  39. \section{Comparison between the old and the new standard}
  40. The differences of importance between the old and new standards will be presented in this chapter to see what parameters might be a problem for the older equipment to fulfil.
  41. One of the most notable differences is the removal of a test pulse from ISO~7637\nd2 that was called \emph{Pulse 5a}. This was instead introduced to the ISO~16750\nd2 under the name \emph{Load dump A}.
  42. Only the properties that proved to differ are mentioned.
  43. %%%%%%%%%%%%%%%%%%%%
  44. \subsection{Supply voltages}
  45. The specification of the DC supply voltage for the DUT differs in some case between the older and the newer versions of the standard. There are two different supply voltage definitions. $U_A$ represents a system where the generator is in operation and $U_B$ represents the system without the generator in operation. These have different values for \SI{12}{\volt} and \SI{24}{\volt} systems. $U_B$ is only relevant for Load dump Test A and is thus not defined in ISO~7637 anymore.
  46. \autoref{tab:supplyVoltageDiff} presents the supply voltage specifications from the different standards. The supply voltages are provided by an external PSU and will thus not be dependent on the test equipment.
  47. \begin{table}[H]
  48. \caption{Comparison of the different supply voltage specifications.}
  49. \begin{adjustbox}{center}
  50. %\centering
  51. \begin{tabular}{|l|r|r|}
  52. \hline
  53. & \multicolumn{2}{c|}{Supply voltage} \\
  54. Standard & $U_N=$\SI{12}{\volt} & $U_N=$\SI{24}{\volt} \\
  55. \hline
  56. \multicolumn{1}{|c}{} & \multicolumn{2}{c|}{$U_A$} \\
  57. \hline
  58. ISO 7637-2:2004 & \SIrange{13}{14}{\volt} & \SIrange{26}{28}{\volt} \\
  59. ISO 7637-2:2011 & \SIrange{12}{13}{\volt} & \SIrange{24}{28}{\volt} \\
  60. ISO 16750-1:2018 & \SIrange{13.8}{14.2}{\volt} & \SIrange{27.8}{28.2}{\volt} \\
  61. \hline
  62. \multicolumn{1}{|c}{} & \multicolumn{2}{c|}{$U_B$} \\
  63. \hline
  64. ISO 7637-2:2004 & \SIrange{12.3}{12.7}{\volt} & \SIrange{23.6}{24.4}{\volt} \\
  65. ISO 16750-1:2018 & \SIrange{12.3}{12.7}{\volt} & \SIrange{23.8}{24.2}{\volt} \\
  66. \hline
  67. \end{tabular}
  68. \end{adjustbox}
  69. \label{tab:supplyVoltageDiff}
  70. \end{table}
  71. %%%%%%%%%%%%%%%%%%%%
  72. \subsection{Surge voltages}
  73. Several of the surge voltages has a wider specified range, as can be seen in \autoref{tab:UADiff}. Notice how the old pulse 5a and the new load dump A have different specifications for $U_S$, but they describe the same pulse because of the different definition of $U_S$ in ISO~7637\nd2 and ISO~16750\nd2.
  74. \begin{table}[H]
  75. \caption{Comparison of the different surge voltage specifications.}
  76. \begin{adjustbox}{center}
  77. %\centering
  78. \begin{tabular}{|l|r|r|}
  79. \hline
  80. & \multicolumn{2}{c|}{$U_S$} \\
  81. Standard & $U_N=$\SI{12}{\volt} & $U_N=$\SI{24}{\volt} \\
  82. \hline
  83. \multicolumn{3}{|l|}{Pulse 1} \\
  84. \hline
  85. ISO 7637-2:2004 & \SIrange{-75}{-100}{\volt} & \SIrange{-450}{-600}{\volt} \\
  86. ISO 7637-2:2011 & \SIrange{-75}{-150}{\volt} & \SIrange{-300}{-600}{\volt} \\
  87. \hline
  88. \multicolumn{3}{|l|}{Pulse 2a} \\
  89. \hline
  90. ISO 7637-2:2004 & \multicolumn{2}{c|}{\SIrange{37}{50}{\volt}} \\
  91. ISO 7637-2:2011 & \multicolumn{2}{c|}{\SIrange{37}{112}{\volt}} \\
  92. \hline
  93. \multicolumn{3}{|l|}{Pulse 3a} \\
  94. \hline
  95. ISO 7637-2:2004 & \SIrange{-112}{-150}{\volt} & \SIrange{-150}{-200}{\volt} \\
  96. ISO 7637-2:2011 & \SIrange{-112}{-220}{\volt} & \SIrange{-150}{-300}{\volt} \\
  97. \hline
  98. \multicolumn{3}{|l|}{Pulse 3b} \\
  99. \hline
  100. ISO 7637-2:2004 & \SIrange{75}{100}{\volt} & \SIrange{150}{200}{\volt} \\
  101. ISO 7637-2:2011 & \SIrange{75}{150}{\volt} & \SIrange{150}{300}{\volt} \\
  102. \hline
  103. \multicolumn{3}{|l|}{Pulse 5a/Load dump A} \\
  104. \hline
  105. ISO 7637-2:2004 & \SIrange{65}{87}{\volt} & \SIrange{123}{174}{\volt} \\
  106. ISO 16750-2:2012 & \SIrange{79}{101}{\volt} & \SIrange{151}{202}{\volt} \\
  107. ISO 16750-2:2012 \tablefootnote{Recalculated values to fit the same $U_S$ definitions as the older standard. $U_{S_{7637}} = U_{S_{16750}}-U_{N_{16750}}$} & \SIrange{65}{87}{\volt} & \SIrange{123}{174}{\volt} \\
  108. \hline
  109. \end{tabular}
  110. \end{adjustbox}
  111. \label{tab:UADiff}
  112. \end{table}
  113. %%%%%%%%%%%%%%%%%%%%
  114. \subsection{Time constraints}
  115. The only time constraint that is stricter in the newer standard is the risetime of pulse 3a and pulse 3b, $t_r$, as shown in \autoref{tab:timingDiff}
  116. \begin{table}[H]
  117. \caption{Comparison of the different time constraints.}
  118. \begin{adjustbox}{center}
  119. %\centering
  120. \begin{tabular}{|l|r|}
  121. \hline
  122. & \multicolumn{1}{c|}{Timing} \\
  123. Standard & \multicolumn{1}{c|}{$t_d$} \\
  124. \hline
  125. ISO 7637-2:2004 & \SIrange{100}{200}{\micro\second} \\
  126. ISO 7637-2:2011 & \SIrange{105}{195}{\micro\second} \\
  127. \hline
  128. \end{tabular}
  129. \end{adjustbox}
  130. \label{tab:timingDiff}
  131. \end{table}
  132. %%%%%%%%%%%%%%%%%%%%
  133. \subsection{Limits during verification}
  134. \textbf{Pulse 1}
  135. Old, 24V, matched: $U_S -300 \pm 30$ V
  136. New, 24V, matched: $U_S -300 \pm 60$ V
  137. \textbf{Pulse 2a}
  138. Old, open: $U_S 50 \pm 5$ V, matched $U_S 25 \pm 5$ V
  139. New, open: $U_S 75 \pm 7.5$ V, matched $U_S 35.5 \pm 7.5$ V
  140. \begin{table}[H]
  141. \caption{Comparison of the different surge voltage limits during calibration.}
  142. \begin{adjustbox}{center}
  143. %\centering
  144. \begin{tabular}{|l|r|r|}
  145. \hline
  146. & \multicolumn{2}{c|}{$U_S$} \\
  147. Standard & $U_N=$\SI{12}{\volt} & $U_N=$\SI{24}{\volt} \\
  148. \hline
  149. \multicolumn{3}{|l|}{Pulse 1} \\
  150. \hline
  151. ISO 7637-2:2004 & \SIrange{-75}{-100}{\volt} & \SIrange{-450}{-600}{\volt} \\
  152. ISO 7637-2:2011 & \SIrange{-75}{-150}{\volt} & \SIrange{-300}{-600}{\volt} \\
  153. \hline
  154. \multicolumn{3}{|l|}{Pulse 2a} \\
  155. \hline
  156. ISO 7637-2:2004 & \multicolumn{2}{c|}{\SIrange{37}{50}{\volt}} \\
  157. ISO 7637-2:2011 & \multicolumn{2}{c|}{\SIrange{37}{112}{\volt}} \\
  158. \hline
  159. \multicolumn{3}{|l|}{Pulse 3a} \\
  160. \hline
  161. ISO 7637-2:2004 & \SIrange{-112}{-150}{\volt} & \SIrange{-150}{-200}{\volt} \\
  162. ISO 7637-2:2011 & \SIrange{-112}{-220}{\volt} & \SIrange{-150}{-300}{\volt} \\
  163. \hline
  164. \multicolumn{3}{|l|}{Pulse 3b} \\
  165. \hline
  166. ISO 7637-2:2004 & \SIrange{75}{100}{\volt} & \SIrange{150}{200}{\volt} \\
  167. ISO 7637-2:2011 & \SIrange{75}{150}{\volt} & \SIrange{150}{300}{\volt} \\
  168. \hline
  169. \multicolumn{3}{|l|}{Pulse 5a/Load dump A} \\
  170. \hline
  171. ISO 7637-2:2004 & \SIrange{65}{87}{\volt} & \SIrange{123}{174}{\volt} \\
  172. ISO 16750-2:2012 & \SIrange{79}{101}{\volt} & \SIrange{151}{202}{\volt} \\
  173. ISO 16750-2:2012 \tablefootnote{Recalculated values to fit the same $U_S$ definitions as the older standard. $U_{S_{7637}} = U_{S_{16750}}-U_{N_{16750}}$} & \SIrange{65}{87}{\volt} & \SIrange{123}{174}{\volt} \\
  174. \hline
  175. \end{tabular}
  176. \end{adjustbox}
  177. \label{tab:UADiff}
  178. \end{table}
  179. %%%%%%%%%%%%%%%%%%%%%%%%%%
  180. \section{Examination and initial measurement of the old equipment}
  181. At first, the test equipment itself needed some care before it was possible to operate it. A couple of screws were loose inside of the LD~200 and a bridge had to be made for the optional external resistor on the MPG~200 for the pulses to even reach the pulse output connectors.
  182. The result from the initial measurements are presented, along with the limits, in \autoref{tab:initial_measurements} without the CNA~200 connected and in \autoref{tab:initial_measurements_cna} with the CNA~200 connected.
  183. \begin{table}[h]
  184. \caption{The initial manual measurements, measured directly at each generator's output.}
  185. \begin{adjustbox}{width=\columnwidth,center}
  186. %\centering
  187. \begin{tabular}{|l|r|r|r|r|r|r|}
  188. \hline
  189. & \multicolumn{3}{c|}{Limits} & \multicolumn{3}{c|}{Measured} \\
  190. Pulse & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) \\ [0.5ex]
  191. \hline
  192. Pulse 1, 12 V, Open & $[ -110, -90 ]$ & $[1.6,2.4]$ \si{\milli} & $[0.5,1]$ \si{\micro} & $-99.0$ & $2.10$ \si{\milli} & $540$ \si{\nano} \\
  193. Pulse 1, 24 V, Open & $[ -660, -540 ]$ & $[0.8,1.2]$ \si{\milli} & $[1.5,3]$ \si{\micro} & $-630$ & $1.18$ \si{\milli} & $2.6$ \si{\micro} \\
  194. Pulse 2a, Open & $[ 67.5, 82.5 ]$ & $[40,60]$ \si{\micro} & $[0.5,1]$ \si{\micro} & $76.0$ & $51.0$ \si{\micro} & $750$ \si{\nano} \\
  195. Pulse 3a, Open (1k) & $[ -220, -180 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-202$ & $163$ \si{\nano} & $5.2$ \si{\nano} \\
  196. Pulse 3a, Match & $[ -120, -80 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-104$ & $134$ \si{\nano} & $5.0$ \si{\nano} \\
  197. Pulse 3b, Open (1k) & $[ 180, 220 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $202$ & \cellcolor{red!60} $208$ \si{\nano} & $5.1$ \si{\nano} \\
  198. Pulse 3b, Match & $[ 80, 120 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $102$ & $166$ \si{\nano} & $5.0$ \si{\nano} \\
  199. Load dump A, 12 V, Open & $[ 90, 110 ]$ & $[320,480]$ \si{\milli} & $[5,10]$ \si{\milli} & $93.4$ & $390$ \si{\milli} & $5.8$ \si{\milli} \\
  200. Load dump A, 24 V, Open & $[ 180, 220 ]$ & $[280,420]$ \si{\milli} & $[5,10]$ \si{\milli} & $190$ & $365$ \si{\milli} & $5.2$ \si{\milli} \\
  201. \hline
  202. \end{tabular}
  203. \end{adjustbox}
  204. \label{tab:initial_measurements}
  205. \end{table}
  206. \begin{table}[h]
  207. \caption{The initial manual measurements on the equipment, including the CNA~200.}
  208. \begin{adjustbox}{width=\columnwidth,center}
  209. %\centering
  210. \begin{tabular}{|l|r|r|r|r|r|r|}
  211. \hline
  212. & \multicolumn{3}{c|}{Limits} & \multicolumn{3}{c|}{Measured} \\
  213. Pulse & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) \\ [0.5ex]
  214. \hline
  215. Pulse 1, 12 V, Open & $[ -110, -90 ]$ & $[1.6,2.4]$ \si{\milli} & $[0.5,1]$ \si{\micro} & $-99.2$ & $2.00$ \si{\milli} & \cellcolor{red!60} $450$ \si{\nano} \\
  216. Pulse 1, 24 V, Open & $[ -660, -540 ]$ & $[0.8,1.2]$ \si{\milli} & $[1.5,3]$ \si{\micro} & $-632$ & $1.18$ \si{\milli} & $2.6$ \si{\micro} \\
  217. Pulse 2a, Open & $[ 67.5, 82.5 ]$ & $[40,60]$ \si{\micro} & $[0.5,1]$ \si{\micro} & $76.0$ & $50.0$ \si{\micro} & $770$ \si{\nano} \\
  218. Pulse 3a, Open (1k) & $[ -220, -180 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-213$ & $163$ \si{\nano} & $6.2$ \si{\nano} \\
  219. Pulse 3a, Match & $[ -120, -80 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-93.2$ & $138$ \si{\nano} & $6.0$ \si{\nano} \\
  220. Pulse 3b, Open (1k) & $[ 180, 220 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & \cellcolor{red!60} $222$ & \cellcolor{red!60} $200$ \si{\nano} & $6.3$ \si{\nano} \\
  221. Pulse 3b, Match & $[ 80, 120 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $94.0$ & $171$ \si{\nano} & $5.7$ \si{\nano} \\
  222. Load dump A, 12 V, Open & $[ 90, 110 ]$ & $[320,480]$ \si{\milli} & $[5,10]$ \si{\milli} & $93.2$ & $394$ \si{\milli} & $5.8$ \si{\milli} \\
  223. Load dump A, 24 V, Open & $[ 180, 220 ]$ & $[280,420]$ \si{\milli} & $[5,10]$ \si{\milli} & $186$ & $400$ \si{\milli} & $5.1$ \si{\milli} \\
  224. \hline
  225. \end{tabular}
  226. \end{adjustbox}
  227. \label{tab:initial_measurements_cna}
  228. \end{table}
  229. %%%%%%%%%%%%%%%%%%%%%%%%%%
  230. \section{Test architecture}
  231. \label{result-test-architecture}
  232. The 3rd alternative was chosen because of the convenience of a fully automatic system and because of the electrical safety hazard that alternative 2 would pose due to its live measurement connectors.
  233. %%%%%%%%%%%%%%%%%%%%%%%%%%
  234. \section{Design of dummy loads}
  235. \subsection{Components}
  236. \todo[förklara komponentval]
  237. \subsection{PCB}
  238. \todo[Peta in bilder]
  239. \subsection{Measurement results}
  240. The resistance at the dummy loads are presented in \autoref{tab:four-wire-result}.
  241. \begin{table}[h]
  242. \captionsetup{width=.6\linewidth}
  243. \caption{The measured resistance of the dummy loads, and the tolerance compared to the nominal values.}
  244. %\begin{adjustbox}{width=0.6\columnwidth,center}
  245. \centering
  246. \begin{tabular}{|l|r|r|}
  247. \hline
  248. Nominal (\si{\ohm}) & Measured $R$ (\si{\ohm}) & Tolerance (\si{\percent}) \\
  249. \hline
  250. 2 & $2.004$ & 0.2 \\
  251. 10 & $9.973$ & 0.27 \\
  252. 50 & $49.954$ & 0.09 \\
  253. \hline
  254. \end{tabular}
  255. %\end{adjustbox}
  256. \label{tab:four-wire-result}
  257. \end{table}
  258. %%%%%%%%%%%%%%%%%%%%%%%%%%
  259. \section{Design of the switching fixture and embedded attenuators}
  260. Vishay's CRCW-HP series fitted this description and were easily available.
  261. \subsection{Attenuators}
  262. The \SI{54.7}{\deci\bel} attenuator was divided into two \SI{27.35}{\deci\bel} $\Pi$ attenuator links. When the closest values for the resistors had been chosen, using \SI{56}{\ohm} as shunt resistors and \SI{560}{\ohm} in series, the final attenuation was \SI{53.66}{\deci\bel} for the two links according to the simulation, seen in \autoref{fig:ltspice-att-ideal-54}. The input and output resistance was
  263. The \SI{60.1}{\deci\bel} attenuator was divided into one \SI{27.35}{\deci\bel} $\Pi$ attenuator links \SI{32.75}{\deci\bel}. When the closest values for the resistors had been chosen, using \SI{56}{\ohm} as shunt resistors and \SI{56}{\ohm} in series, the final attenuation was \SI{53.66}{\deci\bel} for the two links according to the simulation, seen in \autoref{fig:ltspice-att-ideal-54}. The input and output resistance was
  264. \autoref{discussion_attenuators}
  265. \subsection{Measurements}
  266. \begin{figure}
  267. \centering
  268. \begin{subfigure}[t]{0.3\textwidth}
  269. \includegraphics[width=\textwidth]{1k_p}
  270. \caption{Plus terminal closed, all other open}
  271. \end{subfigure}\hfill
  272. \begin{subfigure}[t]{0.3\textwidth}
  273. \includegraphics[width=\textwidth]{1k_pao}
  274. \caption{Plus terminal open, all other open}
  275. \end{subfigure}\hfill
  276. \begin{subfigure}[t]{0.3\textwidth}
  277. \includegraphics[width=\textwidth]{1k_pooc}
  278. \caption{Plus terminal open, all other closed}
  279. \end{subfigure}
  280. \begin{subfigure}[t]{0.3\textwidth}
  281. \includegraphics[width=\textwidth]{1k_m}
  282. \caption{Minus terminal closed, all other open}
  283. \end{subfigure}\hfill
  284. \begin{subfigure}[t]{0.3\textwidth}
  285. \includegraphics[width=\textwidth]{1k_mao}
  286. \caption{Minus terminal open, all other open}
  287. \end{subfigure}\hfill
  288. \begin{subfigure}[t]{0.3\textwidth}
  289. \includegraphics[width=\textwidth]{1k_mooc}
  290. \caption{Minus terminal open, all other closed}
  291. \end{subfigure}
  292. \begin{subfigure}[t]{0.3\textwidth}
  293. \includegraphics[width=\textwidth]{1k_g}
  294. \caption{Ground terminal closed, all other open}
  295. \end{subfigure}\hfill
  296. \begin{subfigure}[t]{0.3\textwidth}
  297. \includegraphics[width=\textwidth]{1k_gao}
  298. \caption{Ground terminal open, all other open}
  299. \end{subfigure}\hfill
  300. \begin{subfigure}[t]{0.3\textwidth}
  301. \includegraphics[width=\textwidth]{1k_gooc}
  302. \caption{Ground terminal open, all other closed}
  303. \end{subfigure}
  304. \caption{The S21 measurements for the attenuators}
  305. \end{figure}
  306. %%%%%%%%%%%%%%%%%%%%%%%%%%
  307. \section{Analysis}
  308. Nah
  309. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  310. %%% lorem.tex ends here
  311. %%% Local Variables:
  312. %%% mode: latex
  313. %%% TeX-master: "demothesis"
  314. %%% End: