results.tex 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. % !TeX root = main.tex
  2. \chapter{Results}\label{cha:results}
  3. \section{Prestudy}
  4. Since not much was known about the project at this time, it was difficult to find relevant papers on the topic of the standards. Most of the literature was found during the project as new problems was found along the way.
  5. \section{Initial measurement of the performance of the old equipment}
  6. As can be seen in \autoref{tab:initial-measurements} and \autoref{tab:initial-measurements-cna}, some values exceeded the limits (marked in red).
  7. \todo[flytta till diskussion?]
  8. Three of these values even exceeds the old standard's limits, thus indicating that the equipment should probably be usable with the new standard after some service or calibration. With this in mind, the course of the project will be targeted towards the design of an automated verification system, as described in \autoref{sec:planning}. With such a verification equipment at hand, the calibration of the generators might be easier to perform as well.
  9. \begin{table}[h]
  10. \begin{adjustbox}{width=\columnwidth,center}
  11. %\centering
  12. \begin{tabular}{|l|r|r|r|r|r|r|}
  13. \hline
  14. & \multicolumn{3}{c|}{Limits} & \multicolumn{3}{c|}{Measured} \\
  15. Pulse & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) \\ [0.5ex]
  16. \hline
  17. Pulse 1, 12 V, Open & $[ -110, -90 ]$ & $[1.6,2.4]$ \si{\milli} & $[0.5,1]$ \si{\micro} & $-99.0$ & $2.10$ \si{\milli} & $540$ \si{\nano} \\
  18. Pulse 1, 24 V, Open & $[ -660, -540 ]$ & $[0.8,1.2]$ \si{\milli} & $[1.5,3]$ \si{\micro} & $-630$ & $1.18$ \si{\milli} & $2.6$ \si{\micro} \\
  19. Pulse 2a, Open & $[ 67.5, 82.5 ]$ & $[40,60]$ \si{\micro} & $[0.5,1]$ \si{\micro} & $76.0$ & $51.0$ \si{\micro} & $750$ \si{\nano} \\
  20. Pulse 3a, Open (1k) & $[ -220, -180 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-202$ & $163$ \si{\nano} & $5.2$ \si{\nano} \\
  21. Pulse 3a, Match & $[ -120, -80 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-104$ & $134$ \si{\nano} & $5.0$ \si{\nano} \\
  22. Pulse 3b, Open (1k) & $[ 180, 220 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $202$ & \cellcolor{red!60} $208$ \si{\nano} & $5.1$ \si{\nano} \\
  23. Pulse 3b, Match & $[ 80, 120 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $102$ & $166$ \si{\nano} & $5.0$ \si{\nano} \\
  24. Load dump A, 12 V, Open & $[ 90, 110 ]$ & $[320,480]$ \si{\milli} & $[5,10]$ \si{\milli} & $93.4$ & $390$ \si{\milli} & $5.8$ \si{\milli} \\
  25. Load dump A, 24 V, Open & $[ 180, 220 ]$ & $[280,420]$ \si{\milli} & $[5,10]$ \si{\milli} & $190$ & $365$ \si{\milli} & $5.2$ \si{\milli} \\
  26. \hline
  27. \end{tabular}
  28. \end{adjustbox}
  29. \caption{The initial manual measurements, measured directly at each generator's output.}
  30. \label{tab:initial-measurements}
  31. \end{table}
  32. \begin{table}[h]
  33. \begin{adjustbox}{width=\columnwidth,center}
  34. %\centering
  35. \begin{tabular}{|l|r|r|r|r|r|r|}
  36. \hline
  37. & \multicolumn{3}{c|}{Limits} & \multicolumn{3}{c|}{Measured} \\
  38. Pulse & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) \\ [0.5ex]
  39. \hline
  40. Pulse 1, 12 V, Open & $[ -110, -90 ]$ & $[1.6,2.4]$ \si{\milli} & $[0.5,1]$ \si{\micro} & $-99.2$ & $2.00$ \si{\milli} & \cellcolor{red!60} $450$ \si{\nano} \\
  41. Pulse 1, 24 V, Open & $[ -660, -540 ]$ & $[0.8,1.2]$ \si{\milli} & $[1.5,3]$ \si{\micro} & $-632$ & $1.18$ \si{\milli} & $2.6$ \si{\micro} \\
  42. Pulse 2a, Open & $[ 67.5, 82.5 ]$ & $[40,60]$ \si{\micro} & $[0.5,1]$ \si{\micro} & $76.0$ & $50.0$ \si{\micro} & $770$ \si{\nano} \\
  43. Pulse 3a, Open (1k) & $[ -220, -180 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-213$ & $163$ \si{\nano} & $6.2$ \si{\nano} \\
  44. Pulse 3a, Match & $[ -120, -80 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-93.2$ & $138$ \si{\nano} & $6.0$ \si{\nano} \\
  45. Pulse 3b, Open (1k) & $[ 180, 220 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & \cellcolor{red!60} $222$ & \cellcolor{red!60} $200$ \si{\nano} & $6.3$ \si{\nano} \\
  46. Pulse 3b, Match & $[ 80, 120 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $94.0$ & $171$ \si{\nano} & $5.7$ \si{\nano} \\
  47. Load dump A, 12 V, Open & $[ 90, 110 ]$ & $[320,480]$ \si{\milli} & $[5,10]$ \si{\milli} & $93.2$ & $394$ \si{\milli} & $5.8$ \si{\milli} \\
  48. Load dump A, 24 V, Open & $[ 180, 220 ]$ & $[280,420]$ \si{\milli} & $[5,10]$ \si{\milli} & $186$ & $400$ \si{\milli} & $5.1$ \si{\milli} \\
  49. \hline
  50. \end{tabular}
  51. \end{adjustbox}
  52. \caption{The initial manual measurements on the equipment, including the CNA~200.}
  53. \label{tab:initial-measurements-cna}
  54. \end{table}
  55. \section{Test architecture}
  56. \label{result-test-architecture}
  57. The 3rd alternative was chosen because of the convenience of a fully automatic system and because of the electrical safety that alternative 2 would pose.
  58. \section{Design of dummy loads}
  59. \todo[flytta till resultat]
  60. The values measured are, presented in \autoref{tab:four-wire-result}, are well within the \SI{1}{\percent} specified by the standard \cite{iso_7637_2}.
  61. \begin{table}[h]
  62. %\begin{adjustbox}{width=\columnwidth,center}
  63. \centering
  64. \begin{tabular}{|l|r|r|}
  65. \hline
  66. Dummy load (\si{\ohm}) & Measured $R$ (\si{\ohm}) & Tolerance (\si{\percent}) \\
  67. \hline
  68. 2 & $2.004$ & 0.2 \\
  69. 10 & $9.973$ & 0.27 \\
  70. 50 & $49.954$ & 0.09 \\
  71. \hline
  72. \end{tabular}
  73. %\end{adjustbox}
  74. \caption{The measured resistance of the dummy loads.}
  75. \label{tab:four-wire-result}
  76. \end{table}
  77. \section{Design of the switching fixture}
  78. Vishay's CRCW-HP series fitted this description and were easily available.
  79. The \SI{54.7}{\deci\bel} attenuator was divided into two \SI{27.35}{\deci\bel} $\Pi$ attenuator links. When the closest values for the resistors had been chosen, using \SI{56}{\ohm} as shunt resistors and \SI{56}{\ohm} in series, the final attenuation was \SI{53.66}{\deci\bel} for the two links according to the simulation, seen in \autoref{fig:ltspice-att-ideal-54}. The input and output resistance was
  80. Nice graphs.
  81. The \SI{60.1}{\deci\bel} attenuator was divided into one \SI{27.35}{\deci\bel} $\Pi$ attenuator links \SI{32.75}{\deci\bel}. When the closest values for the resistors had been chosen, using \SI{56}{\ohm} as shunt resistors and \SI{56}{\ohm} in series, the final attenuation was \SI{53.66}{\deci\bel} for the two links according to the simulation, seen in \autoref{fig:ltspice-att-ideal-54}. The input and output resistance was
  82. \autoref{discussion_attenuators}
  83. \section{Measurement}
  84. \section{Analysis}