| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535 |
- %%% lorem.tex ---
- %%
- %% Filename: lorem.tex
- %% Description:
- %% Author: Ola Leifler
- %% Maintainer:
- %% Created: Wed Nov 10 09:59:23 2010 (CET)
- %% Version: $Id$
- %% Version:
- %% Last-Updated: Wed Nov 10 09:59:47 2010 (CET)
- %% By: Ola Leifler
- %% Update #: 2
- %% URL:
- %% Keywords:
- %% Compatibility:
- %%
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %%
- %%% Commentary:
- %%
- %%
- %%
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %%
- %%% Change log:
- %%
- %%
- %% RCS $Log$
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %%
- %%% Code:
- % !TeX root = main.tex
- \chapter{Results}\label{cha:results}
- This chapter presents the results achieved using the methods described in \autoref{cha:methods}. Each section in this chapter corresponds to a section in the method chapter with the same name.
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section{Prestudy}
- Since not much was known about the project at this time, it was difficult to find relevant papers on the topic of the standards. Most of the literature was found during the project as new problems was found along the way.
- Since the test equipment was mostly in line with the new standards, the first project path was chosen. There was not enough time available to investigate any of the extra tasks as intended.
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section{Comparison between the old and the new standard}
- The differences of importance between the old and new standards will be presented in this chapter to see what parameters might be a problem for the older equipment to fulfil.
- One of the most notable differences is the removal of a test pulse from ISO~7637\nd2 that was called \emph{Pulse 5a}. This was instead introduced to the ISO~16750\nd2 under the name \emph{Load dump A}.
- Only the properties that proved to differ are mentioned in the results.
- %%%%%%%%%%%%%%%%%%%%
- \subsection{Supply voltages}
- The specification of the DC supply voltage for the DUT differs in some case between the older and the newer versions of the standard. There are two different supply voltage definitions. $U_A$ represents a system where the generator is in operation and $U_B$ represents the system without the generator in operation. These have different values for \SI{12}{\volt} and \SI{24}{\volt} systems. $U_B$ is only relevant for Load dump Test A and is thus not defined in ISO~7637 anymore.
- \autoref{tab:supplyVoltageDiff} presents the supply voltage specifications from the different standards. The supply voltages are provided by an external PSU and will thus not be dependent on the test equipment.
- \begin{table}[H]
- \caption{Comparison of the different supply voltage specifications.}
- \begin{adjustbox}{center}
- %\centering
- \begin{tabular}{|l|r|r|}
- \hline
- & \multicolumn{2}{c|}{Supply voltage} \\
- Standard & $U_N=$\SI{12}{\volt} & $U_N=$\SI{24}{\volt} \\
- \hline
- \multicolumn{1}{|c}{} & \multicolumn{2}{c|}{$U_A$} \\
- \hline
- ISO 7637-2:2004 & \SIrange{13}{14}{\volt} & \SIrange{26}{28}{\volt} \\
- ISO 7637-2:2011 & \SIrange{12}{13}{\volt} & \SIrange{24}{28}{\volt} \\
- ISO 16750-1:2018 & \SIrange{13.8}{14.2}{\volt} & \SIrange{27.8}{28.2}{\volt} \\
- \hline
- \multicolumn{1}{|c}{} & \multicolumn{2}{c|}{$U_B$} \\
- \hline
- ISO 7637-2:2004 & \SIrange{12.3}{12.7}{\volt} & \SIrange{23.6}{24.4}{\volt} \\
- ISO 16750-1:2018 & \SIrange{12.3}{12.7}{\volt} & \SIrange{23.8}{24.2}{\volt} \\
- \hline
- \end{tabular}
- \end{adjustbox}
- \label{tab:supplyVoltageDiff}
- \end{table}
- %%%%%%%%%%%%%%%%%%%%
- \subsection{Surge voltages}
- Several of the surge voltages has a wider specified range, as can be seen in \autoref{tab:UADiff}. Notice how the old pulse 5a and the new load dump A have different specifications for $U_S$, but they describe the same pulse because of the different definition of $U_S$ in ISO~7637\nd2 and ISO~16750\nd2.
- \begin{table}[H]
- \caption{Comparison of the different surge voltage specifications.}
- \begin{adjustbox}{center}
- %\centering
- \begin{tabular}{|l|r|r|}
- \hline
- & \multicolumn{2}{c|}{$U_S$} \\
- Standard & $U_N=$\SI{12}{\volt} & $U_N=$\SI{24}{\volt} \\
- \hline
- \multicolumn{3}{|l|}{Pulse 1} \\
- \hline
- ISO 7637-2:2004 & \SIrange{-75}{-100}{\volt} & \SIrange{-450}{-600}{\volt} \\
- ISO 7637-2:2011 & \SIrange{-75}{-150}{\volt} & \SIrange{-300}{-600}{\volt} \\
- \hline
- \multicolumn{3}{|l|}{Pulse 2a} \\
- \hline
- ISO 7637-2:2004 & \multicolumn{2}{c|}{\SIrange{37}{50}{\volt}} \\
- ISO 7637-2:2011 & \multicolumn{2}{c|}{\SIrange{37}{112}{\volt}} \\
- \hline
- \multicolumn{3}{|l|}{Pulse 3a} \\
- \hline
- ISO 7637-2:2004 & \SIrange{-112}{-150}{\volt} & \SIrange{-150}{-200}{\volt} \\
- ISO 7637-2:2011 & \SIrange{-112}{-220}{\volt} & \SIrange{-150}{-300}{\volt} \\
- \hline
- \multicolumn{3}{|l|}{Pulse 3b} \\
- \hline
- ISO 7637-2:2004 & \SIrange{75}{100}{\volt} & \SIrange{150}{200}{\volt} \\
- ISO 7637-2:2011 & \SIrange{75}{150}{\volt} & \SIrange{150}{300}{\volt} \\
- \hline
- \multicolumn{3}{|l|}{Pulse 5a/Load dump A} \\
- \hline
- ISO 7637-2:2004 & \SIrange{65}{87}{\volt} & \SIrange{123}{174}{\volt} \\
- ISO 16750-2:2012 & \SIrange{79}{101}{\volt} & \SIrange{151}{202}{\volt} \\
- ISO 16750-2:2012 \tablefootnote{Recalculated values to fit the same $U_S$ definitions as the older standard. $U_{S_{7637}} = U_{S_{16750}}-U_{N_{16750}}$} & \SIrange{65}{87}{\volt} & \SIrange{123}{174}{\volt} \\
- \hline
- \end{tabular}
- \end{adjustbox}
- \label{tab:UADiff}
- \end{table}
- %%%%%%%%%%%%%%%%%%%%
- \subsection{Time constraints}
- The only time constraint that is stricter in the newer standard is the risetime of pulse 3a and pulse 3b, $t_r$, as shown in \autoref{tab:timingDiff}
- \begin{table}[H]
- \caption{Comparison of the different time constraints.}
- \begin{adjustbox}{center}
- %\centering
- \begin{tabular}{|l|r|}
- \hline
- & \multicolumn{1}{c|}{Timing} \\
- Standard & \multicolumn{1}{c|}{$t_d$} \\
- \hline
- ISO 7637-2:2004 & \SIrange{100}{200}{\micro\second} \\
- ISO 7637-2:2011 & \SIrange{105}{195}{\micro\second} \\
- \hline
- \end{tabular}
- \end{adjustbox}
- \label{tab:timingDiff}
- \end{table}
- %%%%%%%%%%%%%%%%%%%%
- \subsection{Limits in verification}
- Most of the limits are the same in all standards. The only differences found are presented in \autoref{tab:caldiff}. The tolerances for pulse 1 has been widened to \SI{20}{\percent}. The nominal voltage for pulse 2a has been changed to \SI{75}{\volt} for calibration but the tolerance is still \SI{10}{\percent} with no load.
- \begin{table}[H]
- \caption{Comparison of the limits for calibration.}
- \begin{adjustbox}{center}
- %\centering
- \begin{tabular}{|l|r|}
- \hline
- \multicolumn{2}{|l|}{Pulse 1, $U_S$, \SI{24}{\volt}, \SI{50}{\ohm} load} \\
- \hline
- ISO 7637-2:2004 & \SI{-300}{\volt} $\pm$ \SI{30}{\volt} \\
- ISO 7637-2:2011 & \SI{-300}{\volt} $\pm$ \SI{60}{\volt} \\
- \hline
- \multicolumn{2}{|l|}{Pulse 2a, $U_S$, no load} \\
- \hline
- ISO 7637-2:2004 & \SI{50}{\volt} $\pm$ \SI{5}{\volt} \\
- ISO 7637-2:2011 & \SI{75}{\volt} $\pm$ \SI{7.5}{\volt} \\
- \hline
- \multicolumn{2}{|l|}{Pulse 2a, $U_S$, \SI{2}{\ohm} load} \\
- \hline
- ISO 7637-2:2004 & \SI{25}{\volt} $\pm$ \SI{5}{\volt} \\
- ISO 7637-2:2011 & \SI{37.5}{\volt} $\pm$ \SI{7.5}{\volt} \\
- \hline
- \end{tabular}
- \end{adjustbox}
- \label{tab:caldiff}
- \end{table}
- %%%%%%%%%%%%%%%%%%%%%%%%%%
- \section{Examination and initial measurement of the old equipment}
- At first, the test equipment itself needed some care before it was possible to operate it. A couple of screws were loose inside of the LD~200 and a bridge had to be made for the optional external resistor on the MPG~200 for the pulses to even reach the pulse output connectors.
- The result from the initial measurements are presented, along with the limits, in \autoref{tab:initial_measurements} without the CNA~200 connected and in \autoref{tab:initial_measurements_cna} with the CNA~200 connected.
- \begin{table}[h]
- \caption{The initial manual measurements, measured directly at each generator's output.}
- \begin{adjustbox}{width=\columnwidth,center}
- %\centering
- \begin{tabular}{|l|r|r|r|r|r|r|}
- \hline
- & \multicolumn{3}{c|}{Limits} & \multicolumn{3}{c|}{Measured} \\
- Pulse & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) \\ [0.5ex]
- \hline
- Pulse 1, 12 V, Open & $[ -110, -90 ]$ & $[1.6,2.4]$ \si{\milli} & $[0.5,1]$ \si{\micro} & $-99.0$ & $2.10$ \si{\milli} & $540$ \si{\nano} \\
- Pulse 1, 24 V, Open & $[ -660, -540 ]$ & $[0.8,1.2]$ \si{\milli} & $[1.5,3]$ \si{\micro} & $-630$ & $1.18$ \si{\milli} & $2.6$ \si{\micro} \\
- Pulse 2a, Open & $[ 67.5, 82.5 ]$ & $[40,60]$ \si{\micro} & $[0.5,1]$ \si{\micro} & $76.0$ & $51.0$ \si{\micro} & $750$ \si{\nano} \\
- Pulse 3a, Open (1k) & $[ -220, -180 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-202$ & $163$ \si{\nano} & $5.2$ \si{\nano} \\
- Pulse 3a, Match & $[ -120, -80 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-104$ & $134$ \si{\nano} & $5.0$ \si{\nano} \\
- Pulse 3b, Open (1k) & $[ 180, 220 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $202$ & \cellcolor{red!60} $208$ \si{\nano} & $5.1$ \si{\nano} \\
- Pulse 3b, Match & $[ 80, 120 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $102$ & $166$ \si{\nano} & $5.0$ \si{\nano} \\
- Load dump A, 12 V, Open & $[ 90, 110 ]$ & $[320,480]$ \si{\milli} & $[5,10]$ \si{\milli} & $93.4$ & $390$ \si{\milli} & $5.8$ \si{\milli} \\
- Load dump A, 24 V, Open & $[ 180, 220 ]$ & $[280,420]$ \si{\milli} & $[5,10]$ \si{\milli} & $190$ & $365$ \si{\milli} & $5.2$ \si{\milli} \\
- \hline
- \end{tabular}
- \end{adjustbox}
- \label{tab:initial_measurements}
- \end{table}
- \begin{table}[h]
- \caption{The initial manual measurements on the equipment, including the CNA~200.}
- \begin{adjustbox}{width=\columnwidth,center}
- %\centering
- \begin{tabular}{|l|r|r|r|r|r|r|}
- \hline
- & \multicolumn{3}{c|}{Limits} & \multicolumn{3}{c|}{Measured} \\
- Pulse & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) & $U_S$ (\si{\volt}) & $t_d$ (\si{\second}) & $t_r$ (\si{\second}) \\ [0.5ex]
- \hline
- Pulse 1, 12 V, Open & $[ -110, -90 ]$ & $[1.6,2.4]$ \si{\milli} & $[0.5,1]$ \si{\micro} & $-99.2$ & $2.00$ \si{\milli} & \cellcolor{red!60} $450$ \si{\nano} \\
- Pulse 1, 24 V, Open & $[ -660, -540 ]$ & $[0.8,1.2]$ \si{\milli} & $[1.5,3]$ \si{\micro} & $-632$ & $1.18$ \si{\milli} & $2.6$ \si{\micro} \\
- Pulse 2a, Open & $[ 67.5, 82.5 ]$ & $[40,60]$ \si{\micro} & $[0.5,1]$ \si{\micro} & $76.0$ & $50.0$ \si{\micro} & $770$ \si{\nano} \\
- Pulse 3a, Open (1k) & $[ -220, -180 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-213$ & $163$ \si{\nano} & $6.2$ \si{\nano} \\
- Pulse 3a, Match & $[ -120, -80 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $-93.2$ & $138$ \si{\nano} & $6.0$ \si{\nano} \\
- Pulse 3b, Open (1k) & $[ 180, 220 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & \cellcolor{red!60} $222$ & \cellcolor{red!60} $200$ \si{\nano} & $6.3$ \si{\nano} \\
- Pulse 3b, Match & $[ 80, 120 ]$ & $[105,195]$ \si{\nano} & $[3.5,6.5]$ \si{\nano} & $94.0$ & $171$ \si{\nano} & $5.7$ \si{\nano} \\
- Load dump A, 12 V, Open & $[ 90, 110 ]$ & $[320,480]$ \si{\milli} & $[5,10]$ \si{\milli} & $93.2$ & $394$ \si{\milli} & $5.8$ \si{\milli} \\
- Load dump A, 24 V, Open & $[ 180, 220 ]$ & $[280,420]$ \si{\milli} & $[5,10]$ \si{\milli} & $186$ & $400$ \si{\milli} & $5.1$ \si{\milli} \\
- \hline
- \end{tabular}
- \end{adjustbox}
- \label{tab:initial_measurements_cna}
- \end{table}
- %%%%%%%%%%%%%%%%%%%%%%%%%%
- \section{Test architecture}
- \label{result-test-architecture}
- The 3rd alternative was chosen because of the convenience of a fully automatic system and because of the electrical safety hazard that alternative 2 would pose due to its live measurement connectors.
- %%%%%%%%%%%%%%%%%%%%%%%%%%
- \section{Design of dummy loads}
- %%%%%%%%%%%%%%%%%%
- \subsection{Components}
- The results of the maximum momentary power is shown in \autoref{tab:dummy_load_worst_case}. The MPG~200 can generate much higher voltage than the LD~200 which yields a higher momentary power to the dummy loads with these values.
- \begin{table}[h]
- \caption{Calculated momentary worst cases for each dummy load. The LD~200 is included for comparison to the MPG~200 even though it does not result in the highest power.}
- \begin{adjustbox}{width=\columnwidth,center}
- \centering
- \begin{tabular}{|l|r|r|r|r|r|r|}
- \hline
- Dummy load & Generator & $R_S$ & Generator voltage & Resistor peak voltage & Peak resistor power \\
- \hline
- \SI{2}{\ohm} & LD 200 & \SI{0.5}{\ohm} & \SI{200}{\volt} & \SI{160}{\volt} & \SI{12.8}{\kilo\watt} \\
- \SI{2}{\ohm} & MPG 200 & \SI{2}{\ohm} & \SI{600}{\volt} & \SI{300}{\volt} & \SI{45 }{\kilo\watt} \\
- \SI{10}{\ohm} & MPG 200 & \SI{2}{\ohm} & \SI{600}{\volt} & \SI{500}{\volt} & \SI{ 5 }{\kilo\watt} \\
- \SI{50}{\ohm} & MPG 200 & \SI{2}{\ohm} & \SI{600}{\volt} & \SI{577}{\volt} & \SI{266 }{\watt} \\
- \hline
- \end{tabular}
- \end{adjustbox}
- \label{tab:dummy_load_worst_case}
- \end{table}
- The maximum energy transferred to the \SI{2}{\ohm}, however, is delivered by the LD~200 generator as shown in \autoref{fig:dummy2_energy}.
- \begin{figure}[H]
- \centering
- \begin{subfigure}[t]{0.48\textwidth}
- \includegraphics[width=\textwidth]{mpg200_energy}
- \caption{The MPG~200 transfers approximately \SI{23}{\joule} to the dummy load.}
- \label{fig:mpg200_energy}
- \end{subfigure}
- \begin{subfigure}[t]{0.48\textwidth}
- \includegraphics[width=\textwidth]{ld200_energy}
- \caption{The LD~200 transfers approximately \SI{1.2}{\kilo\joule} to the dummy load.}
- \label{fig:ld200_energy}
- \end{subfigure}
- \caption{The maximum energies transferred from the pulse generators to the \SI{2}{\ohm} dummy load. The vertical scale represents the energy in Joule, but is presented in voltage because of the way it is calculated in the simulation.}
- \label{fig:dummy2_energy}
- \end{figure}
- The LTO100 family from Vishay was chosen because of its high power characteristics and because the maximum overload energy curve was specified in its datasheet. Whith the datasheet and simulation side by side, a worst ratio between the simulated energy and the energy specified in the datasheet was determined. The worst case found for the different pulses and dummy loads can be found in \autoref{tab:dummy_load_energies}.
- \begin{table}[h]
- \caption{The worst case ratio between the simulation energies and the datasheet specification. The ratio equals the minimum number of resistors needed to share the energy.}
- %\begin{adjustbox}{width=\columnwidth,center}
- \centering
- \begin{tabular}{|r|r|l|}
- \hline
- Dummy load & Ratio & Limiting property \\
- \hline
- \SI{2}{\ohm} & 26 & Pulse 5 energy after \SI{50}{\milli\second} \\
- \SI{10}{\ohm} & 10 & Pulse 5 energy after \SI{100}{\milli\second} \\
- \SI{50}{\ohm} & 2 & Pulse 5 energy after \SI{50}{\milli\second} \\
- \hline
- \end{tabular}
- %\end{adjustbox}
- \label{tab:dummy_load_energies}
- \end{table}
- When the least number of resistors required had been determined, some different resistor topologies were considered before setteling on the configuration seen in \autoref{fig:dummy_load_schematic}. The number of different resistor values was keept as low as considered possible to keep things easy.
- \begin{figure}[H]
- %\captionsetup{width=.5\linewidth}
- \centering
- \includegraphics[width=\textwidth]{dummy_load_schematic}
- \caption{The topology chosen for the \SI{2}{\ohm}, \SI{10}{\ohm} and \SI{50}{\ohm} dummy loads.}
- \label{fig:dummy_load_schematic}
- \end{figure}
- %%%%%%%%%%%%%%%%%%
- \subsection{PCB}
- Because of the high voltages present on the board, a minumum creepage of 3mm was used. This is in line with the \mbox{EN 60664-1} standard \cite{en_60664_1}. The board was perforated to allow for better air flow past the resistors, improving the cooling. The mounting holes for the card was placed in a \SI[product-units=single]{105 x 105}{\milli\meter} square, allowing a \SI{120}{\milli\meter} fan to be mounted on top of the card using mounting hardware.
- A two layer board was chosen, and all of the traces were mirrored on both layers to get as much conductive cross sectional area as possible, and thus lowering the resistance and power dissipation in the traces. The default copper thickness from the manufacturer\footnote{Cogra Pro AB https://www.cogra.se/produkter/monsterkort/\url{}}, was \SI{18}{\micro\meter}, but this PCB was ordered with \SI{60}{\micro\meter} thick copper layer to further extend the cross sectional areas. The width of the traces for the \SI{2}{\ohm} load was chosen as wide as possible without violating the \SI{3}{\milli\meter} creepage distance.
- The PCB layout was tested by printing it out and making a mockup board using a piece of card board, see \autoref{fig:dummy-load-prototype}. In this way, the resulting board was a perfect fit on the first try, as seen in \autoref{fig:dummy-load-assembled}.
- \begin{figure}[H]
- \centering
- \begin{subfigure}[t]{0.48\textwidth}
- \includegraphics[width=\textwidth]{dummy-load-prototype}
- \caption{Before the dummy load PCB was sent for manufacturing, it was printed and placed on a piece of card board to ensure the footprints are correct and that the placement is not obstructing anything vital.}
- \label{fig:dummy-load-prototype}
- \end{subfigure}
- \begin{subfigure}[t]{0.48\textwidth}
- \includegraphics[width=\textwidth]{dummy-load-assembled}
- \caption{The assembled dummy load.}
- \label{fig:dummy-load-assembled}
- \end{subfigure}
- \caption{The resulting board was predicted using a card board mockup PCB.}
- \label{fig:dummy-load-development}
- \end{figure}
- When the PCB was delivered, it was visually inspected before assembling. The component placement was correct, but some modification was made to improve the isolation distance by drilling away the plating and pads of the ventilation holes. The modified board's top and bottom side can be seen in \autoref{fig:dummy-load-top} and \autoref{fig:dummy-load-bottom} respectively.
- \begin{figure}[H]
- \centering
- \begin{subfigure}[t]{0.48\textwidth}
- \includegraphics[width=\textwidth]{dummy-load-top}
- \caption{Top.}
- \label{fig:dummy-load-top}
- \end{subfigure}
- \begin{subfigure}[t]{0.48\textwidth}
- \includegraphics[width=\textwidth]{dummy-load-bottom}
- \caption{Bottom.}
- \label{fig:dummy-load-bottom}
- \end{subfigure}
- \caption{The plating in the ventilation holes was removed by hand using a drill.}
- \label{fig:dummy-load-pcb}
- \end{figure}
- %%%%%%%%%%%%%%%%%%
- \subsection{Measurements}
- The resistance at the dummy loads are presented in \autoref{tab:four-wire-result}.
- \begin{table}[h]
- \captionsetup{width=.6\linewidth}
- \caption{The measured resistance of the dummy loads, and the tolerance compared to the nominal values.}
- %\begin{adjustbox}{width=0.6\columnwidth,center}
- \centering
- \begin{tabular}{|l|r|r|}
- \hline
- Nominal (\si{\ohm}) & Measured $R$ (\si{\ohm}) & Tolerance (\si{\percent}) \\
- \hline
- 2 & $2.004$ & $+ 0.2$ \\
- 10 & $9.973$ & $ 0.27 $ \\
- 50 & $49.954$ & $ 0.09 $ \\
- \hline
- \end{tabular}
- %\end{adjustbox}
- \label{tab:four-wire-result}
- \end{table}
- %%%%%%%%%%%%%%%%%%%%%%%%%%
- \section{Design of the switching fixture and embedded attenuators}
- Vishay's CRCW-HP series fitted this description and were easily available.
- %%%%%%%%%%%%%%%%%%
- \subsection{Attenuators}
-
- The \SI{54.7}{\deci\bel} attenuator was divided into two \SI{27.35}{\deci\bel} $\Pi$ attenuator links. When the closest values for the resistors had been chosen, using \SI{56}{\ohm} as shunt resistors and \SI{560}{\ohm} in series, the final attenuation was \SI{53.66}{\deci\bel} for the two links according to the simulation, seen in \autoref{fig:ltspice-att-ideal-54}. The input and output resistance was
- The \SI{60.1}{\deci\bel} attenuator was divided into one \SI{27.35}{\deci\bel} $\Pi$ attenuator links \SI{32.75}{\deci\bel}. When the closest values for the resistors had been chosen, using \SI{56}{\ohm} as shunt resistors and \SI{56}{\ohm} in series, the final attenuation was \SI{53.66}{\deci\bel} for the two links according to the simulation, seen in \autoref{fig:ltspice-att-ideal-54}. The input and output resistance was
- \autoref{discussion_attenuators}
- %%%%%%%%%%%%%%%%%%
- \subsection{PCB}
- To attach the relay card fixture to the \SI{4}{\mm} banana connectors on the CNA~200, three banana plugs was designed to be screwed directly to the PCB. This makes the conductors as short as possible, and also act as mechanical fastening of the PCB to the case.
- %%%%%%%%%%%%%%%%%%
- \subsection{Measurements}
- The network analyzer was set up for S21 according to \autoref{fig:network_analyzing}. This setup proved to be unstable at first, as moving the coaxial wires and the grounding wire greatly affected the results for the higher frequencies. Because of the unstable results early in the measuring process, a modification was made to shorten the ground connection by attaching a braid as close as the attenuator grounds as possible and then grounding it directly to the fixture case, as depicted in \autoref{fig:ground_braid}. All subsequent measurements were performed with this modification.
- The results of the magnitude response measurements can be seen for the \SI{50}{\ohm} attenuator in \autoref{fig:50-s21} and for the \SI{1}{\kilo\ohm} attenuator in \autoref{fig:1k-s21}. The PAT~50 and PAT~1000 attenuators were measured as reference and their results can be seen in \autoref{fig:pat-50} and \autoref{fig:pat-1000} respectively. One of the relays that were used was also measured in a stand-alone setup according to \autoref{fig:relay-setup}, with the results presented in \autoref{fig:relay-result}.
- \begin{figure}[H]
- \centering
- \begin{subfigure}[t]{0.48\textwidth}
- \includegraphics[width=\textwidth]{network_analyzing}
- \caption{The network analyzer sends its signal into the attenuator through the metallic test rig and receives it back through the BNC outlet of the attenuator.}
- \label{fig:network_analyzing}
- \end{subfigure}
- \begin{subfigure}[t]{0.48\textwidth}
- \includegraphics[width=\textwidth]{ground_braid}
- \caption{The modified grounding path.}
- \label{fig:ground_braid}
- \end{subfigure}
- \caption{The test setup for measuring the magnitude response in the attenuators.}
- \label{fig:dummy-load-pcb}
- \end{figure}
- \begin{figure}
- \centering
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{50_p}
- \caption{Plus terminal closed, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{50_pao}
- \caption{Plus terminal open, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{50_pooc}
- \caption{Plus terminal open, all other closed}
- \end{subfigure}
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{50_m}
- \caption{Minus terminal closed, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{50_mao}
- \caption{Minus terminal open, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{50_mooc}
- \caption{Minus terminal open, all other closed}
- \end{subfigure}
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{50_g}
- \caption{Ground terminal closed, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{50_gao}
- \caption{Ground terminal open, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{50_gooc}
- \caption{Ground terminal open, all other closed}
- \end{subfigure}
- \caption{The S21 measurements for the \SI{50}{\ohm} attenuators}
- \label{fig:50-s21}
-
- \end{figure}
- \begin{figure}
- \centering
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{1k_p}
- \caption{Plus terminal closed, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{1k_pao}
- \caption{Plus terminal open, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{1k_pooc}
- \caption{Plus terminal open, all other closed}
- \end{subfigure}
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{1k_m}
- \caption{Minus terminal closed, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{1k_mao}
- \caption{Minus terminal open, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{1k_mooc}
- \caption{Minus terminal open, all other closed}
- \end{subfigure}
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{1k_g}
- \caption{Ground terminal closed, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{1k_gao}
- \caption{Ground terminal open, all other open}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.3\textwidth}
- \includegraphics[width=\textwidth]{1k_gooc}
- \caption{Ground terminal open, all other closed}
- \end{subfigure}
- \caption{The S21 measurements for the \SI{1}{\kilo\ohm} attenuators}
- \label{fig:1k-s21}
-
- \end{figure}
- \begin{figure}
- \centering
- \begin{subfigure}[t]{0.4\textwidth}
- \includegraphics[width=\textwidth]{pat50}
- \caption{PAT 50}
- \label{fig:pat-50}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.4\textwidth}
- \includegraphics[width=\textwidth]{pat1000}
- \caption{PAT 1000}
- \label{fig:pat-1000}
- \end{subfigure}
-
- \begin{subfigure}[t]{0.4\textwidth}
- \includegraphics[width=\textwidth]{relay_measurement}
- \caption{The relay measured with § leads.}
- \label{fig:relay-setup}
- \end{subfigure}\hfill
- \begin{subfigure}[t]{0.4\textwidth}
- \includegraphics[width=\textwidth]{relay_open}
- \caption{The relay's magnitude response.}
- \label{fig:relay-result}
- \end{subfigure}
- \caption{Some additional S21 measurements were made for reference.}
-
- \end{figure}
|